

l

Copyright© 2014 by
The American Radio Relay League, Inc.

Copyright secured under the Pan-American
Convention

All rights reserved. No part of this work may
be reproduced in any form except by written
permission of the publisher. All rights of
translation are reserved.

Printed in the USA

Quedan reservados todos las derechos

ISBN: 978-1-62595-016-1

First Edition
Second Printing

We strive to produce books without errors.
Sometimes mistakes do occur, however. When we
become aware of problems in our books (other than
obvious typographical errors), we post corrections on
the ARRL website. If you think you have found an error,
please check www.arrl.org/arduino for corrections. If
you don't find a correction there, please let us know by
sending e-mail to pubsfdbk@arrl.org.

Contents
Foreword

Acknowledgements

About the Author

About This Book

How This Book is Organized

Introduction

1 Introduction to the Arduino

2 Arduino Boards and Variants

3 Arduino Shields, Modules, and Devices

4 Arduino 1/0 Methods

5 Arduino Development Environment

6 Arduino Development Station

7 Random Code Practice Generator

8 CW Beacon and Foxhunt Keyer

9 Fan Speed Controller

10 Digital Compass

11 Weather Station

12 RF Probe with LED Bar Graph

13 Solar Battery Charge Monitor

14 On-Air Indicator

15 Talking SWR Meter

16 Talking GPS/UTC Time/Grid Square Indicator

17 Iambic Keyer

18 Waveform Generator

19 PS/2 CW Keyboard

20 Field Day Satellite Tracker

21 Azimuth/Elevation Rotator Controller

22 CW Decoder

23 Lightning Detector

24 CDE/Hy-Gain Rotator Controller

25 Modified CDE/Hy-Gain Rotator Controller

26 In Conclusion

Appendix A - Sketches and Libraries

Appendix B - Design and Schematic Tools

Appendix C - Vendor Links and References

Foreword
Homebrewing - "do it yourself' in today's terminology - has been

a part of Amateur Radio since the early days. Hams build equipment and
antennas, integrate individual station pieces into complete systems, and find
new ways to use computers to make operating more efficient or enjoyable.

These days, hams are exploring the world of microcontrollers to create
new and exciting ham radio station gear. In this book, author Glen Popiel,
KW5GP, describes the popular and inexpensive Arduino microcontroller
family and shows how to use these powerful yet inexpensive devices with
additional modules, accessory boards and components to create a wide
variety of interesting projects. Later chapters describe practical applications
that range from a simple digital compass, to CW operating accessories, to
test equipment and sophisticated rotator controller/computer interfaces.
There's a little something for everyone here. You may get started right
away and use the projects as-is, or customize them if you are so inclined.

Arduino hardware and software are all Open Source, which means that
they are well documented. Software, schematics and other information is
freely available. Support is available online in the form of tutorials and
Arduino user groups, so you won't have to go it alone. Part of the appeal
of using the Arduino and related modules is the spirit of sharing in the
Open Source community. Chances are good that if you are interested in
modifying one of these projects to suit your needs, someone has done a
similar project and shared the results online.

We hope you'll be inspired to expand your horizons by learning about
the Arduino and trying some of the projects in this book.

David Sumner, KlZZ
Chief Executive Officer
Newington, Connecticut
May 2014

Acknowledgements
To my Dad, who taught me that learning to do things yourself is the best

way to learn.

I would like to thank my friend, Tim Billingsley, KD5CKP, for introducing
me to the Arduino, acting as my sounding board as the concept for this book
came to be, and for trying to keep me sane throughout this whole process. I
would also like to thank Craig Behrens, NM4T, for his knowledge, guidance
and support.

There are so many others who helped make this book happen, and I
apologize in advance to anyone I may have omitted. Thanks to the Olive Branch
Mississippi and Helena Arkansas Amateur Radio Clubs, along with Chip
Isaacks, W5WWI, for their support and encouragement. I would also like to
thank ARRL Publications Manager, Steve Ford, WB8IMY, my editor, Mark
Wilson, Kl RO, and the staff at ARRL for allowing me the opportunity to work
with them.

Many of the images shown in this book depict the use of the Fritzing
software tool. See the Fritzing Open Source Hardware Initiative at www.
fritzing.com.

And a special thanks to the Open Source Community. It is their spirit of
sharing knowledge and the fruits of their labors with the world that has made
the Arduino the wonderful development platform that it is. Thank you.

About the Author
Glen Popiel is a network engineer and technology consultant for Ciber,

Inc. and the Mississippi Department of Education, specializing in Open Source
technology solutions. First published in Kilobaud Microcomputing in 1979
for circuits he designed for the RCA 1802 microprocessor, he continues to
work with microcontrollers and their uses in Amateur Radio and has written
numerous articles on computers and Amateur Radio.

Always taking things apart (and sometimes even getting them to work
afterward), he discovered electronics in high school and has never looked
back. As a teenager, he had one of the first true "home computers," a Digital

Equipment (DEC) PDP-8 minicomputer
(complete with state-of-the-art Model 35
Teletype) in his bedroom that he and his friends
salvaged from the scrap heap. Over his 40+ year
career, he has worked for various aerospace and
computer manufacturers on radio and military
turbojet research data acquisition and control
systems.

Since discovering the Arduino several
years ago, he has developed a passion for this
powerful, inexpensive microcontroller and has
given a number of seminars and hamfest forums
on the subject of the Arduino and Open Source.
He is a member of the Olive Branch Amateur
Radio Club (OBARC), QRP Amateur Radio
Club International (QRP-ARCI), and the QRP

SkunkWerks, a design team of fellow hams and Arduino enthusiasts who have
succeeded in getting the JT65-HF digital mode working natively on the TEN
TEC Rebel, a CW-only (so they thought) QRP transceiver.

Glen is also a former cat show judge and has exhibited Maine Coon cats all
over the country, with the highlight being a Best in Show at Madison Square
Garden in 1989. He now lives in Southaven, Mississippi, where he continues to
create fun and exciting new Arduino projects for Amateur Radio with his trusty
Maine Coon sidekick, Mysti.

About This Book
Welcome fellow hams and Arduino enthusiasts.
As a ham "homebrewer" and Arduino "Maker," I wanted to create a group of

Arduino projects for the Amateur Radio community in general. Going beyond
the typical "blinking lights" programs, assembled here you will find a diverse
collection of Arduino ham radio-related projects that can be built in a few short
days.

My goal was to provide not just a group of ham-related projects for the
Arduino for you to copy and build, but to encourage you to take what is
presented here and expand on each project, adding your own personal touches to
the finished product. To help you on this journey, this book starts by building a
solid foundation with an introduction to the various Arduino boards and add-on
components I have found to be most useful in ham radio applications. Each new
module or component is described in detail, to assist you in choosing the right
pieces for your own projects.

This book assumes a basic working knowledge of electronic components
and construction techniques. You don't have to be a master, but you should
feel comfortable soldering and building projects. If you're new to electronics,
ARRL has some excellent books to help you along the way. For starters, there
is Electronics for Dummies by Cathleen Shamieh and Gordon McComb (ISBN
978-0470286975, ARRL order no. 0196). Another excellent starting point is
Understanding Basic Electronics by Walter Banzhaf, WB lANE (ISBN 978-
087259-082-3, ARRL order no. 0823), and of course, there is the timeless ARRL
Handbook, which is published annually. Every ham should have a copy of the
ARRL Handbook on their bookshelf. I find myself constantly re-reading mine
and learning something new every time. These books and other useful resources
are available from Amateur Radio dealers or www.arrl.org/shop.

You will also need a working knowledge of the Arduino and the Arduino
Integrated Development Environment (IDE). There are several excellent
introductory books and tutorials you may find helpful. My personal favorites
include Beginning Arduino by Michael McRoberts (ISBN 978-1430232407) and
Arduino Cookbook by Michael Margolis (ISBN 978-1449313876). There are
also some outstanding Arduino tutorials online at www.arduino.cc and www.
learn.adafruit.com.

You don't have to be a ham radio operator to build and use the projects in the
book, but I do strongly encourage you to become a ham if you are not. You don't
know what you're missing. There is something for everyone in the ham radio
community, and there is absolutely no reason for you to go it alone as you start
out on these projects. Find a local club at www.arrl.org/find-a-club and attend
a meeting or two. You will not find a friendlier, more helpful bunch of people
anywhere, and odds are you will meet other Arduino enthusiasts with whom you
can collaborate on your own Arduino projects. For more information on how to
become a radio amateur, check out the ARRL Ham Radio License Manual (ISBN
978-1-62595-013-0, ARRL order no. 0222) and Ham Radio for Dummies (ISBN
978-1-118-59211-3, ARRL order no. 0502), both by H. Ward Silver, N0AX.

How This Book is Organized
This book is designed to introduce the Arduino and how it can be applied

to ham radio. The projects presented begin with simple designs and concepts,
gradually increasing in complexity and functionality. Each new component or
programming technique is explained in detail as it appears in a project.

Chapter 1, Introduction to the Arduino, introduces the Arduino and its
history, and provides a basic understanding of the concepts of Open Source and
the various Open Source licenses.

Chapter 2, Arduino Boards and Variants, describes the types of Arduino and
Arduino-compatible boards commonly used in ham radio projects.

Chapter 3, Arduino Shields, Modules, and Devices, covers various boards
and components that can be used to interface with the Arduino, allowing
it to sense and communicate with the outside world, with an emphasis on
components suited for ham radio projects.

Chapter 4, Arduino I/O Methods, discusses in detail the UO capabilities of
the Arduino, which method is best for communicating with the various shields
and components, and how best to implement each UO method.

Chapter 5, Arduino Development Environment, introduces the Arduino
IDE, writing sketches (programs), using program libraries, and troubleshooting
methods.

Chapter 6, Arduino Development Station, discusses how best to build a work
area to develop projects with the Arduino, including design, breadboarding,
prototyping, and construction techniques.

Chapter 7, Random Code Practice Generator, introduces a simple Morse
Code trainer project to become familiar with the Arduino.

Chapter 8, CW Beacon and Foxhunt Keyer, describes another easy project
that introduces how to interface with radios.

Chapter 9, Fan Speed Controller, shows how to sense temperature and
control the speed of a fan to maintain a constant temperature.

Chapter 10, Digital Compass, covers how to build a simple digital compass
using a 3-axis compass module.

Chapter 11, Weather Station, shows how to interface to barometric pressure,
humidity, and temperature sensors.

Chapter 12, RF Probe with LED Bar Graph measures the relative strength
of an RF signal.

Chapter 13, Solar Battery Charge Monitor, demonstrates how to use an
Arduino to measure solar cell output, battery voltage, and charging current.

Chapter 14, On-Air Indicator, demonstrates how to use an Arduino to sense
RF and light an On-Air indicator with a programmable delay.

Chapter 15, Talking SWR Meter, demonstrates how to use sensors and
analog-to-digital conversion methods to determine the standing wave ratio
(SWR) of an antenna system. It uses a text-to-speech module to convert the
output into speech.

Chapter 16, Talking GPS/UTC Time/Grid Square Indicator, shows how to
interface a GPS module to the Arduino, calculate and display the Maidenhead
Grid Locator, and output the results using a text-to-speech module.

Chapter 17, Iambic Keyer, shows how to create a CW keyer using the
Arduino.

Chapter 18, Waveform Generator, shows how to use a programmable direct
digital synthesis (DDS) module to generate sine, square, and triangle waves.

Chapter 19, PS/2 CW Keyboard, demonstrates how to send Morse code
using a standard PC keyboard.

Chapter 20, Field Day Satellite Tracker, describes how to build a model
satellite tracker interfaced with PC software such as Ham Radio Deluxe and
SatPC32 to track satellites for portable events such as Field Day.

Chapter 21, Azimuth/Elevation Rotator Controller, describes how to build
an interface to control the Yaesu 05400/5500 satellite rotator controller, sense
the position of the antenna, and allow PC software such as Ham Radio Deluxe
to rotate your antennas and track satellites automatically.

Chapter 22, CW Decoder, demonstrates how to interface audio from a
receiver and decode incoming CW signals into text on a display.

Chapter 23, Lightning Detector, demonstrates how to sense lightning, and
calculate the distance and intensity.

Chapter 24, CDE/Hy-Gain Rotator Controller, describes how to build an
antenna rotator controller, sense the position of the antenna, and drive relays to
control your antenna rotator motor.

Chapter 25, Modified CDE/Hy-Gain Rotator Controller, describes how to
modify a CDE/Hy-Gain HAM series rotator controller, sense the position of the
antenna, and allow PC software such as Ham Radio Deluxe to automatically
control your antenna position.

Chapter 26, In Conclusion, discusses projects not included in the book to
provide concepts and ideas for other projects to encourage going beyond the
scope of the book.

Appendix A, Sketches and Libraries, includes a complete summary of the
program listings (sketches) and libraries needed for each project and provides
information about how to find these listings.

Appendix B, Design and Schematic Tools, discusses the Fritzing and
Cadsoft EaglePCB software packages used to develop the projects in this book.

Appendix C, Vendor Links and References, provides a listing of Arduino
related resources for components, tutorials, and other relevant information.

Introduction
Building equipment, or homebrewing as hams prefer to call it, has always

been a cornerstone of Amateur Radio. In the early days, the only way to get on
the air was to build it yourself or bribe a friend to help you build a radio. Later,
companies such as Heathkit flourished with kits of all descriptions. I remember
eagerly waiting for each new Heathkit catalog to see what new and exciting kit I
could dream about building next.

I built many of those kits over the years. In fact, my very first radio as
a Novice class licensee was the venerable Heathkit HW-16 transceiver. I
didn't build that one, but it had been modified by its builder. That custom
built kit radio inspired me to build Heathkit radios for myself. Not satisfied
with what I had, modifying the kits I had just finished building was the next
order of business. I'll never forget the day when I finished installing a receive
preamplifier in my trusty Heathkit HW-101 HF transceiver so I could hear the
newest Amateur Radio satellite, AMSAT-OSCAR 7, on 10 meters. It would
not surprise me one bit if that old HW-101 is still out there somewhere, with
its current owner wondering about the function of that little switch on the front
panel.

With the advent of the modem era, computers, and the complexity of
a typical ham shack, homebrewing has taken a back seat to commercially
available new rigs and accessories. Personal computers are now an integral
part of many ham shacks. Why would anyone want to take the time to build
something, or spend months writing a program, when a tried-and-true version
is just a credit card and a mouse click or two away? And so, the art of kit

Peanut Butter and Jelly
As it turns outs out, jelly was not the

first companion for peanut butter. Originally
created by Dr. Ambrose W. Straub in 1880
as a source of nutrition for his patients with
bad teeth, peanut butter rapidly grew in
popularity, and was a hit at the 1904 World's
Fair in St Louis. At the turn of the century, it
was considered a delicacy, often served with
pimento, nasturtium (edible flowers), cheese,
celery, and watercress. It wasn't until 1901 that
the first recipe for peanut butter and jelly was
published.

During World War II, both peanut butter
and jelly were on the US military ration menu
and it is said the soldiers used jelly on their
peanut butter to make it more palatable. Once
the soldiers returned home from the war,
peanut butter and jelly became a staple for
lunch everywhere.

building and homebrewing began to fade into the
background.

Enter the Arduino, a small, inexpensive, easy
to-program microcontroller. A whole new world
is now opened up to the homebrewer. Those once
complex projects that would take too much time,
money, and knowledge to complete are now just
pennies and a few small steps away.

The Arduino is not without a following of its
own. With its Open Source model, it comes with
a whole community of developers and builders
who call themselves "Makers." Now you have a
simple development platform and a whole world
of developers sharing the fruits of their labor with
everyone ... for free.

It was only a matter of time before the
lines between the two groups of enthusiasts
began to blur. Like that brave enterprising soul
that first combined peanut butter with jelly, a
synergy formed between ham radio and the

Arduino. (Stop and think about it - someone had to be first, with no idea what
peanut butter and jelly would taste like. Odds are jelly was not their first test
ingredient.) The interest in homebrewing is back on the rise, and there are now
all sorts of new and exciting projects for ham radio using the Arduino and other
microcontrollers.

Presented here is a collection of ham-related projects for you to build and
expand upon. Never being one to do the Arduino "blinking light" thing, each
project was chosen for its usefulness and functionality in ham activities. By
design, the projects are complete and usable as they are, but they leave plenty of
room for enhancement and expansion. That's where you come in. Your mission,
should you decide to accept it, is to take these projects, add to them, and make
them better and more powerful than they are. That's where the real fun is in
Open Source development- taking someone else's project and making it
better, tweaking it to your own personal needs and gaining the satisfaction in
knowing that you did it yourself.

And please, don't forget the cardinal rule of Open Source. When you do add
your own personal touches and enhance a project beyond what it is, give back
to the Open Source community. Who knows, there may be someone out there
looking for exactly what you have created. It's that spirit of sharing knowledge
and designs that make the Open Source world what it is, a truly unique place to
build and share wonderful new toys.

73,

Glen Popiel, KW5GP
kwSgp@arrl.net

May 2014

0

About the ARRL
The seed for Amateur Radio was planted in the 1890s, when Guglielmo Marconi began his

experiments in wireless telegraphy. Soon he was joined by dozens, then hundreds, of others who
were enthusiastic about sending and receiving messages through the air-some with a commercial
interest, but others solely out of a love for this new communications medium. The United States
government began licensing Amateur Radio operators in 1912.

By 1914, there were thousands of Amateur Radio operators- hams- in the United States.
Hiram Percy Maxim, a leading Hartford, Connecticut inventor and industrialist, saw the need for an
organization to band together this fledgling group of radio experimenters. In May 1914 he founded
the American Radio Relay League (ARRL) to meet that need.

Today ARRL, with approximately 155,000 members, is the largest organization of radio ama-
teurs in the United States. The ARRL is a not-for-profit organization that:

• promotes interest in Amateur Radio communications and experimentation
• represents US radio amateurs in legislative matters, and
• maintains fraternalism and a high standard of conduct among Amateur Radio operators.

At ARRL headquarters in the Hartford suburb of Newington, the staff helps serve the needs of
members. ARRL is also International Secretariat for the International Amateur Radio Union, which
is made up of similar societies in 150 countries around the world.

ARRL publishes the monthly journal QST and an interactive digital version of QST, as well as
newsletters and many publications covering all aspects of Amateur Radio . Its headquarters station,
WlAW, transmits bulletins of interest to radio amateurs and Morse code practice sessions. The
ARRL also coordinates an extensive field organization, which includes volunteers who provide
technical information and other support services for radio amateurs as well as communications for
public-service activities. In addition, ARRL represents US amateurs with the Federal Communica
tions Commission and other government agencies in the US and abroad.

Membership in ARRL means much more than receiving QST each month. In addition to the
services already described, ARRL offers membership services on a personal level, such as the Tech
nical Information Service-where members can get answers by phone, email or the ARRL website,
to all their technical and operating questions.

Full ARRL membership (available only to licensed radio amateurs) gives you a voice in how
the affairs of the organization are governed. ARRL policy is set by a Board of Directors (one from
each of 15 Divisions). Each year, one-third of the ARRL Board of Directors stands for election by
the full members they represent. The day-to-day operation of ARRL HQ is managed by an Execu
tive Vice President and his staff.

No matter what aspect of Amateur Radio attracts you, ARRL membership is relevant and
important. There would be no Amateur Radio as we know it today were it not for the ARRL. We
would be happy to welcome you as a member! (An Amateur Radio license is not required for Asso
ciate Membership.) For more information about ARRL and answers to any questions you may have
about Amateur Radio, write or call:

ARRL-the national association for Amateur Radio®
225 Main Street
Newington CT 06111-1494
Voice: 860-594-0200
Fax: 860-594-0259
E-mail: hq@arrl.org
Internet: www.arrl.org

Prospective new amateurs call (toll-free):
800-32-NEW HAM (800-326-3942)
You can also contact us via e-mail at newham@arrl.org
r check out the ARRL website at www.arrl.org

CHAPTER 1

Introduction
to the Arduino

The Arduino Uno.

The Arduino has become wildly popular among the hobbyist community.
In 2011, there were an estimated 300,000 Arduino boards in use, not counting
the many "clone" boards produced under the Arduino's unique Open Source
licensing model. With its standalone single-board design, the Arduino can
interface with a wide variety of sensors and controls easily and inexpensively.
Based on the Atmel series of microcontrollers, the Arduino, with its onboard
digital and analog 1/0 (input/output), is an easy and inexpensive way to build
extremely versatile electronic projects.

Released under the Open Source Creative Commons Attribution Share-Alike
license, the Arduino is totally Open Source, as described later in this chapter.
From the board designs and schematic files, to the Arduino programs (known as
"sketches") and libraries, everything is Open Source. You are free to do whatever
you desire, as long as you properly credit the authors in your work and share
any changes you make to the existing code and libraries. For the most part, this
means that everything about the Arduino is either free or very low cost.

Introduction to the Arduino 1-1

1-2 Chapter 1

One of the main benefits of Open Source is that you have a whole
community of hobbyists developing and sharing their projects freely. This can
save you many hours of work if someone is working on projects similar to
yours. You can freely integrate their libraries and code into your project, turning
what could have been a months-long programming ordeal into a much shorter,
more enjoyable path to a finished project

Along with the Arduino board itself, there is a vast selection of components
and modules designed to interface with the Arduino. These devices use the
various device communication protocols such as the Serial Peripheral Interface
(SPI) and Inter-Integrated Circuit (12C) already built into the Arduino, allowing
simple connections to the Arduino using only a few wires. Now you can create
complex projects without having to dig through datasheets and solder for
months as you had to in days gone by. For example, the Lightning Detector
project presented later in this book needs only 11 wires to connect the lightning
detector module and the Nokia LCD display to the Arduino. Since the libraries
to communicate with these modules already existed, all that I had to do was
include the libraries in the project and get right down to the brass tacks of what
I wanted the project to be.

The Hardware
Although there are now numerous variations on the Arduino, the

most common Arduino, the Uno consists of an Atmel ATmega328 8-bit
microcontroller with a clock speed of 16 MHz. The ATmega328 has 32 KB of
flash memory, 2 KB of static RAM (SRAM), and 1 KB of electrically erasable
programmable read-only memory (EEPROM) onboard. The Arduino has 14
digital 110 pins. Six of these pins can also do pulse width modulation (PWM),
and six 10-bit analog inputs can also be used for digital 110 pins. Two of the
digital pins also directly support external hardware interrupts, and all 24110
pins support pin state change interrupts, allowing external hardware control of
program execution.

Typically powered via the USB programming port, with its low current
drain and onboard power regulator the Arduino is ideally suited for battery
powered projects. The Arduino supports multiple communication protocols,
including standard Serial, Serial Peripheral Interface (SPI), Two-Wire
(also known as Inter-Integrated Circuit or 12C), and 1-Wire. Designed for
expandability, the Arduino 110 and power connections are brought out to a
series of headers on the main board. The header layout is standard among the
majority of the Uno-type boards and many of the basic Arduino add-ons, also
known as shields, can be plugged directly into these headers and stacked one
on top of the other, providing power and 110 directly to the shield without any
additional wiring needed.

Many types of shields are available, including all manner of displays,
Ethernet, Wi-Fi, motor driver, MP3, and a wide array of other devices. My
personal favorite is the prototyping shield, which allows you to build your own
interface to an even wider array of Arduino-compatible components, modules,
and breakout boards. You can find GPS, real time clock, compass, text-to
speech, and lightning detection modules, for example, along with an endless

list of sensors such accelerometers, pressure, humidity, proximity, motion,
vibration, temperature, and many more. We'll explore some of these modules
and sensors in projects presented in later chapters of this book.

History
As living proof that necessity is the mother of invention, the Arduino was

created at the Interaction Design Institute lvrea, in the northern Italian town
of lvrea. Originally designed as an inexpensive Open Source tool for students,
replacing the more expensive and less powerful Parallax "Basic Stamp"
development platform then used by students at the institute, the Arduino began
as a thesis project in 2003 by artist and design student, Hernando Barragan,
designed for a non-technical audience.

This project, known as Wiring, was based on a ready-to-use circuit board
with an Integrated Development Environment (IDE) based on the Processing
language created by Ben Fry and one of Barragan's thesis advisors, Casey
Reas . Wiring was then adapted in 2005 by a team co-founded by another of
Barragan's thesis advisors, Massimo Banzi. This team consisted of Hernando
Barragan, Massimo Banzi, David Cuartielles, Dave Mellis, Gianluca Marino,
and Nicholas Zambetti. Their goal was to further simplify the Wiring platform
and design a simple, inexpensive Open Source prototyping platform to be used
by non-technical artists, designers, and others in the creative field. Banzi's
design philosophy regarding the Arduino is best outlined in his quote "Fifty
years ago, to write software you needed people in white aprons who knew
everything about vacuum tubes. Now, even my mom can program."

Unfortunately, at the same time, due a lack of funding the Institute was
forced to close its doors . Fearing their projects would not survive or be
misappropriated, the team decided to make the entire project Open Source.
Released under the Open Source Creative Commons license, the Arduino
became one of the first, if not the first, Open Source hardware products.
Needing a name for the project, the team decided to name it Arduino after
a local pub named "Bar Di Re Arduino" which itself honors the memory of
Italian King Arduin.

Everything about the Arduino is Open Source. The board designs and
schematic files are Open Source, meaning that anyone can create their own
version of the Arduino free of charge. The Creative Commons licensing
agreement allows for unrestricted personal and commercial derivatives as long
as the developer gives credit to Arduino, and releases their work under the
same license. Only the name Arduino is trademarked, which is why the various
Arduino-compatible boards have names like lduino, Ardweeny, Boarduino,
Freeduino, and so on. Typically these boards are fully compatible with their
official Arduino counterpart, and they may include additional features not on
the original Arduino board.

Massimo Banzi's statement about the Arduino project, "You don't need
anyone's permission to make something great," and Arduino team member
David Cuartielles's quote, "The philosophy behind Arduino is that if you
want to learn electronics, you should be able to learn as you go from day one,
instead of starting by learning algebra" sums up what has made the Arduino

Introduction to the Arduino 1-3

1-4 Chapter 1

so popular among hobbyists and builders. The collective knowledgebase of
Arduino sketches and program libraries is immense and constantly growing,
allowing the average hobbyist to quickly and easily develop complex projects
that once took mountains of datasheets and components to build. The Arduino
phenomenon has sparked the establishment of a number of suppliers for add-on
boards, modules, and sensors adapted for the Arduino. The current (as of mid-
2014) Arduino team consisting of Massimo Banzi, David Cuartielles, Tom Igoe,
Gianluca Martino, and David Mellis has continued to expand and promote the
Arduino family of products.

Since its inception, the Arduino product line has been expanded to include
more powerful and faster platforms, such as the 86 MHz 32-bit Arduino
Due, based on the Atmel SAM3X8E ARM Cortex-M3 processor, and the
dual-processor Arduino Yun, which contains the Atheros AR9331 running
an onboard Linux distribution in addition to the ATmega32u4 processor that
provides Arduino functionality. With the Arduino Tre, a I-GHz Sitara AM335x
processor based Linux/Arduino dual-processor design, the Arduino now has
the power needed to support processing-intensive applications and high speed
communications. The Arduino variants are discussed in more detail in Chapter 2.

What is Open Source?
Generally speaking, Open Source refers to software in which the source

code is freely available to the general public for use and/or modification.
Probably the best example of Open Source software is the Linux operating
system created by Linus Torvalds. Linux has evolved into a very powerful
operating system, and the vast majority of applications that run on Linux are
Open Source. A large percentage of the web servers on the Internet are Linux
based, running the Open Source Apache Web Server. The popular Firefox web
browser is also Open Source, and the list goes on. Even the Android phone
operating system is based on Linux and is itself Open Source. This ability
to modify and adapt existing software is one of the cornerstones of the Open
Source movement, and is what had led to its popularity and success.

The Arduino team took the concept of Open Source to a whole new level.
Everything about the Arduino - hardware and software - is released under
the Creative Commons Open Source License. This means that not only is the
Integrated Development Environment (IDE) software for the Arduino Open
Source, the Arduino hardware itself is also Open Source. All of the board
design file and schematics are Open Source, meaning that anyone can use these
files to create their own Arduino board. In fact, everything on the Arduino
website, www.arduino.cc, is released as Open Source.

As the Arduino developer community grows, so does the number of Open
Source applications and add-on products, also released as Open Source. While
it may be easier to buy an Arduino board, shield or module, in the vast majority
of cases, everything you need to etch and build your own board is freely
available for you to do as you wish. The only real restriction is that you have
to give your work back to the Open Source community under the same Open
Source licensing. What more could a hobbyist ask for? Everything about the
Arduino is either free or low cost. You have a whole community of developers

at your back, creating code and projects that you can use in your own projects,
saving you weeks and months of development. As you will see in some of the
projects in this book, it takes longer to wire and solder things together than it
does to actually get it working. That is the true power of Open Source, everyone
working together as a collective, freely sharing their work, so that others can
join in on the fun.

Open Source Licensing and How it Works
There are several main variations on the Open Source licensing model, but

all are intended to allow the general public to freely use, modify, and distribute
their work. The most common Open Source license models you will encounter
include the GNU General Public License (GPL), Lesser GPL (LGPL), MIT, and
the Creative Commons licenses. As a general rule, for the average hobbyist, this
means you are free to do as you wish. However, there will always be those of us
that come up with that really cool project we can package up and sell to finance
our next idea. It is important for that group to review and understand the various
license models you may encounter in the Open Source world.

The GNU GPL

As with all Open Source licensing models, the GNU General Public License
(GPL) is intended to guarantee your freedom to share, modify, and distribute
software freely. Developers who release software under the GPL desire their
work to be free and remain free, no matter who changes or distributes the
program. The GPL allows you to distribute and publish the software as long
as you provide the copyright notice, disclaimer of warranty, and keep intact all
notices that refer to the license. Any modified files must carry prominent notices
stating that you changed the files and the date of any changes.

Any work that you distribute and publish must be licensed as a whole
under the same license. You must also accompany the software with either
a machine-readable copy of the source code or a written offer to provide a
complete machine readable copy of the software. Recipients of your software
will automatically be granted the same license to copy, distribute, and modify
the software. One major restriction to the GPL is that it does not permit
incorporating GPL software into proprietary programs.

The copyright usage in the GPL is commonly referred to as "copyleft,"
meaning that rather than using the copyright process to restrict users as with
proprietary software, the GPL copyright is used to ensure that every user has the
same freedoms as the creator of the software.

There are two major versions of the GPL, Version 2, and the more recent
Version 3. There are no radical differences between the two versions; the
changes are primarily to make the license easier for everyone to use and
understand. Version 3 also addresses laws that prohibit bypassing Digital Rights
Management (DRM). This is primarily for codecs and other software that
deals with DRM content. Additional changes were made to protect your right
to "tinker" and prevent hardware restrictions that don't allow modified GPL
programs to run. In an effort to prevent this form of restriction, also known as
Tivoization, Version 3 of the GPL has language that specifically prevents such

Introduction to the Arduino 1-5

1-6 Chapter 1

restriction and restores your right to make changes to the software that works on
the hardware it was originally intended to run on. Finally, Version 3 of the GPL
also includes stronger protections against patent threats.

The Lesser GNU General Public License (LGPL)
The LGPL is very similar to the GPL, except that it permits the usage of

program libraries in proprietary programs. This form of licensing is generally
to encourage more widespread usage of a program library in an effort for the
library to become a de-facto standard, or as a substitute for a proprietary library.
As with the GPL, you must make your library modifications available under the
same licensing model, but you do not have to release your proprietary code. In
most cases, it is preferable to use the standard GPL licensing model.

The MIT License

Originating at the Massachusetts Institute of Technology, the MIT license
is a permissive free software license. This license permits reuse of the software
within proprietary software, provided all copies of the software include the MIT
license terms. The proprietary software will retain its proprietary nature even
though it incorporates software licensed under the MIT license. This license is
considered to be GPL-compatible, meaning that the GPL permits combination
and redistribution with software that uses the MIT License. The MIT license
also states more explicitly the rights granted to the end user, including the right
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell the
software.

The Creative Commons License
There are multiple versions of the Creative Commons License, each with

different terms and conditions:
•Attribution (CC BY) - This license allows others to distribute, remix,

tweak, and build upon a work, even commercially, as long as they credit the
creator for the original creation.

•Attribution-NonCommercial (CC BY-NC) - This license allows others to
remix, tweak, and build upon a work non-commercially. While any new works
must also acknowledge the creator and be non-commercial, any derivative
works are not required to be licensed on the same terms.

•Attribution-ShareAlike (CC BY-SA) - This is the most common form of
the Creative Commons License. As with the Attribution license, it allows others
to distribute, remix, tweak, and build upon a work, even commercially, as long
as they credit the creator for the original creation, and license their new creation
under the same license terms. All new works based on yours convey the same
license, so any derivatives will also allow commercial use.

•Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) - This
license allows others to distribute, remix, tweak, and build upon a work non
commercially, as long as they credit the creator and license their new creations
under the identical licensing terms.

•Attribution-No Derivs (CC BY-ND) - This license allows for
redistribution, both commercial and non-commercial, as long as it is passed

along unchanged and in its entirety, with credit given to the original creator.
•Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) - This is the

most restrictive of the Creative Commons licenses, only allowing others to
download a work and share them with others as long as they credit the creator.
Works released under this license cannot be modified in any way, nor can they
be used commercially.

The Arduino is released under the Creative Commons Attribution
ShareAlike (CC BY-SA) license. You can freely use the original design files and
content from the Arduino website, www.arduino.cc, both commercially and
non-commercially, as long as credit is given to Arduino and any derivative work
is released under the same licensing. So, if by chance you do create something
that you would like to sell, you are free to do so, as long as you give the
appropriate credit to Arduino and follow the requirements outlined in the FAQ
on the Arduino website, as you may not be required to release your source code
if you follow specific guidelines. If you include libraries in your work, be sure
you use them within their licensing guidelines. The core Arduino libraries are
released under the LGPL and the Java-based IDE is released under the GPL.

In Conclusion
It is this Open Source licensing that has made the Arduino so popular

among hobbyists. You have the freedom to do just about anything you want and
there are many others developing code and libraries you can freely incorporate
in your code, which helps make developing on the Arduino so much fun. For
example, I know very little about Fast Fourier transforms, but there is a fully
functional library out there just waiting for me to come up with a way to use
it. That's the beauty of the Arduino and Open Source. You don't have to be a
programming genius to create fully functional projects as long as you have the
entire Open Source developer community to draw upon. And, when you do start
creating wonderful new things, remember to share them back to the community,
so that others following in your footsteps can benefit from your work and create
wonderful new things of their own.

References
Arduino - www.arduino.cc
Arduino Shield List - www.shieldlist.org
Atheros Communications - www.atheros.com
Atmel Corp - www.atmel.com
Creative Commons - http://creativecommons.org
GNU Operating System - www.gnu.org
Open Source Initiative - http://opensource.org
Texas Instruments - www.ti.com

Introduction to the Arduino 1-7

CHAPTER 2

Arduino Boards and
Variants

Trying to decide which of the various Arduino boards to use in your project
can be confusing. Many versions of the Arduino have been developed since its
creation in 2005, and there is no straightforward way to identify the capabilities
and specifications of each board. In this chapter, we will briefly explore the
various Arduino boards to help you determine which board best suits your
project ideas.

The Arduino in General
The basic Arduino uses an Atmel ATmega-series microcontroller providing

14 digital 110 pins and six 10-bit analog-to-digital input pins that can also be
used for digital 110. Six of the digital 110 pins support pulse width modulation
(PWM). Two of the digital 110 pins can be configured to support external
interrupts for hardware program control and all 24 110 pins can be configured to
provide a program interrupt when the pin changes state.

The Arduino typically has three types of memory: flash, static random
access memory (SRAM), and electrically-erasable programmable read-only
memory (EEPROM). The flash memory is rewritable memory used to hold
your Arduino programs, known as sketches. This memory has a lifetime of

Figure 2.1 -Arduino Serial. [courtesy www.arduino.cc;
Nicholas Zambetti photo]

Arduino Boards and Variants 2-1

2-2 Chapter 2

approximately 100,000 write cycles. Flash memory can also be used to hold
data that doesn't change, such as lookup tables and other constants to save
valuable SRAM space through the use of the PROGMEM keyword. SRAM is
used to hold your program and system variables. The EEPROM can be used
to retain data between reboot or power cycles, such as calibration values and
other similar data. The Arduino EEPROM also has a lifetime of approximately
100,000 write cycles.

The ATmega microcontroller supports the serial, SPI, and FC
communication protocols. The majority of the Arduino boards in this series
have a standard 2. 7 x 2.1 inch footprint. Female headers on the edges of the
board allow for the stacking of add-on interfaces, also known as shields, without
the need for additional wiring.

The ATmegaS Series
The early Arduino boards such as the Arduino Serial shown in Figure 2.1

were based on the 8-MHz ATmega8 processor and had 8 KB of program (flash)
memory, 1 KB of static RAM (SRAM), and 512 bytes of EEPROM onboard.
These early Arduino boards included the first board to bear the Arduino name,
the Arduino USB, the Arduino Extreme, and the Arduino NG. Both this family
and the ATmega168-based boards have been generally superseded by the
ATmega328 boards, but a number of these older boards are still available.

The ATmega168 Series
The second generation of the Arduino boards used the 16-MHz Atmel

ATmega168 processor. The ATmega168 increased the program memory to 16
KB, but was otherwise similar to the ATmega8. Arduino boards in this family
include the first Arduino board to ship with the ATmega168, the NG+, the
Arduino Bluetooth, the Nano, the LilyPad (designed to be used in wearable
Arduino projects), the Mini, the Diecimila (Figure 2.2), and the Duemilanove.

Figure 2.2 - Arduino Diecimila. [courtesy commons.wikimedia.org;
Remko van Dokkum photo]

Figure 2.3 - Arduino Uno.

The ATmega328 Series
With the introduction of the 16-MHz Atmel ATmega328 processor, the

Arduino's popularity began to soar, and it is this generation and its successors
that this book will emphasize. The Arduino Uno R3 (Figure 2.3) has become
the defacto standard for Arduino boards. Other boards in this generation include
the upgraded Duernilanove, LilyPad and Nano; the Fio, which was designed
for battery powered wireless applications, and the Pro-Mini. The ATmega328
has 32 KB of flash memory, 2 KB of SRAM, and 1 KB of EEPROM. In later
versions, the ATmega328 processor is replaced with the ATmega32u4, identical in
functionality to the ATmega328 with the addition of a USB controller integrated
into the processor itself.

Bite Size Arduinos
The Arduino is available in a number of smaller footprints as well, allowing

you to miniaturize your projects. These tiny Arduinos, shown in Figures 2.4 to 2.7,

Figure 2.4 - Arduino Pro Mini.

Arduino Boards and Variants 2-3

2-4 Chapter 2

feature the same functionality and performance as their full-sized brothers in
a much smaller form factor. The Arduino Pro Mini is a mere 0.7 x 1.3 inches
and the Arduino Nano is 1.7 x 0.73 inches. Some, such as the Ardweeny from
Solarbotics and the DC Boarduino from Adafruit, require the use of a USB-to
serial interface card (also known as an FTDI interface - see Figure 2.8) for
program loading and interfacing with the IDE.

The LilyPad Arduino (Figure 2.9) was designed and developed by Leah
Buechley and SparkFun Electronics to be used in wearable projects. A mere
2 inches in diameter, the LilyPad Arduino can be sewn into fabric with the 1/0
and power connections connected via conductive thread. A more recent version,

Figure 2.5 - lduino Nano.

Figure 2.6 - DC Boarduino.

Figure 2.7- Solarbotics Ardweeny.

Figure 2.8 - FTDI USB to serial adapter.

Figure 2.9 - Lilypad Arduino.

Arduino Boards and Variants 2-5

2-6 Chapter 2

the LilyPad Arduino SimpleSnap, has a built-in rechargeable lithium polymer
battery and conductive snap connectors for UO, allowing the board to be easily
removed when washing the fabric.

The Mega Series
For those needing more memory and UO, there is the Arduino Mega series.

Beginning with the Arduino Mega, based on the 16-MHz Atmel ATmega 1280,
the Mega series packs a punch with 54 digital input/output pins, sixteen 10-bit
analog inputs, and four serial hardware ports on a 4 x 2.1 inch board. Six of
the digital UO pins can be configured as interrupt pins and 14 digital UO pins
can provide pulse width (PWM) output. The UO headers are arranged to be

Figure 2.10 -Arduino Mega 2560.

Figure 2.11 - Arduino Leonardo.

compatible with most of the Arduino shields designed for the Uno and similar
Arduinos. The Arduino Mega ups the program flash memory to 128 KB, the
SRAM to 8 KB, and the EEPROM to 4 KB.

The Mega was superseded by the Mega2560 and Mega2560 ADK. The 16-
MHz Mega2560 (Figure 2.10) is based on the Atmel ATmega 2560 processor,
with 256 KB of program flash memory. The Mega2560 also adds an additional
digital 1/0 pin that can provide PWM, for a total of 15 PWM outputs. The
Mega2560 ADK adds a USB host port to enable communication with Android
phones for use with Google's Android Accessory Development Kit.

The New Generation of Arduinos
The Arduino continues to evolve, with newer and more powerful versions

appearing on a regular basis. The latest board in the standard Arduino footprint
(as of early 2014) is the Arduino Leonardo shown in Figure 2.11. Based on the
16-MHz Atmel ATmega32u4 processor, the Leonardo has 20digital1/0 pins.
Seven of these pins can provide PWM and 12 can be 10-bit analog-to-digital
pins. Five of the digital 1/0 pins can be configured to support interrupts. The
Leonardo also has a built-in USB controller, allowing the Leonardo to appear
to a connected computer as a mouse and keyboard, in addition to the standard
serial COM port. The Leonardo also has 2.5 KB of SRAM, compared to the
Uno's 2 KB .

The Arduino Esplora
Derived from the Arduino Leonardo, the Arduino Esplora (Figure 2.12)

offers the same functionality and performance of the Arduino Leonardo while
including a number of built-in, ready-to-use, onboard sensors. Shaped like a
videogame controller, the Esplora is designed for people who want to get up
and running with Arduino without having to learn about the electronics first.

Figure 2.12 -Arduino Esplora. [courtesy Adafruit Industries (product code: 1348)]

Arduino Boards and Variants 2-7

2-8 Chapter 2

The Esplora has a two-axis joystick with a center pushbutton, four pushbutton
inputs, a slide potentiometer, microphone, light sensor, a temperature sensor,
a three-axis accelerometer, a buzzer, and an RGB LED onboard. It also has
with two Tinkerkit input and output connectors, along with a socket for a color
TFT LCD screen. There is also a software library designed for the Esplora and
its sensors, which greatly simplifies the process of interfacing with all of the
onboard features.

The Arduino Due
Based on the Atmel 84-MHz SAM3X8E ARM Cortex-M3 processor, the

Arduino Due shown in Figure 2.13 is the first 32-bit Arduino microcontroller.
The Arduino Due has 512 KB of flash memory and 96 KB of SRAM. Unlike
previous Arduino designs, the Arduino Due does not have any onboard
EEPROM. The Arduino Due has 54 digital input/output pins, twelve 12-bit
analog inputs, two 12-bit digital-to-analog outputs, two 12C ports, and four
hardware serial ports. Twelve of the digital 1/0 pins can be configured as PWM
outputs. An ERASE button has been added to manually erase the contents of the
flash memory. As with the Leonardo, the Arduino Due has a USB host port,
which allows it to emulate a keyboard or mouse to a connected workstation.

It is very important to note that the Arduino Due runs at 3.3 V instead of the
typical 5 V. The maximum voltage the 1/0 pins can handle is also 3.3 V. Like
the Mega series, the Arduino Due is compatible with most standard Arduino
shields, but care must be taken not to exceed the 3.3 V limit on the 1/0 pins.

Figure 2.13 -Arduino Due.

The Arduino Yun
Based on the ATmega32u4 and the Atheros AR9331, the Arduino Yun

(Figure 2.14) is the first dual processor Arduino microcontroller board. The
16-MHz ATmega 32u4 provides Arduino functionality similar to the Arduino

[J

[l

Figure 2.14 - Arduino Yun. [courtesy www.arduino.cc]

Leonardo, while the 400-MHz Atheros processor supports a Linux distribution
based on OpenWRT named Linino. The Arduino Yun has built-in 10/100 Mb/s
Ethernet and IEEE 802.11 b/g/n WiFi support, a USB, microSD card slot, 20
digital I/O pins, and twelve 10-bit analog input pins. Seven of the digital I/O
pins can be configured to use pulse width modulation (PWM).

The Arduino Yun is supported by the Bridge library which facilitates
communication between the two processors, giving Arduino sketches the
ability to run shell scripts, communicate with network interfaces, and receive
information from the AR9331 processor.

The Arduino Yun's 16-MHz ATmega32u4 controller has 32 KB of flash
memory, 2.5 MB of SRAM, and 1 KB ofEEPROM. The 400-MHz Atheros
AR9331 processor on the Arduino Yun comes with 64 MB of DDR2 RAM and
16 MB of flash memory.

The Arduino Tre
Due out as this book was prepared in the spring of 2014, the Arduino Tre

(Figure 2.15) is the first Arduino board manufactured in the US. Boasting
a 1-GHz Sitara AM335x processor, the Arduino Tre offers the processing
horsepower of a desktop paired with the standard Arduino functionality.
Partially the result of a close collaboration between Arduino and the
BeagleBoard.org foundation, the Tre design combines the benefits of both
boards onto a single development platform.

The Arduino side of the Tre will off er the same features and performance
of the 16-MHz Arduino Leonardo alongside the 1-GHz Texas Instrument Sitara
AM3359AZCZ100 (ARM Cortex-AS) processor. The preliminary specifications

Arduino Boards and Variants 2-9

Figure 2.15 - Arduino Tre. [courtesy www.arduino.cc]

on the Sitara processor include 512 MB of DDR3 RAM, a 10/100 Ethernet port,
four USB 2.0 host ports, along with HDMI video and audio ports.

The Arduino Compatibles
The success of the Arduino has led to several derivative products that

warrant inclusion in this discussion about the various Arduino boards you
may encounter. Digilent's chipKIT series (Figure 2.16) is a unique Arduino
variation. Based on Microchip's 80-MHz PIC32MX320F128 processor, the
chipKIT Uno32 is a 32-bit PIC rnicrocontroller that emulates the Arduino Uno.
The Uno32 has 128 KB of flash program memory and 16 KB of SRAM data
memory, but has no EEPROM and is programmed using a custom version of
the Integrated Development Environment (IDE) known as the Multi-Platform
Integrated Development Environment (MPIDE). The MPIDE is backward
compatible with the standard Arduino IDE.

Because it emulates the Arduino Uno, the Uno32 is code compatible with
most Arduino sketches, has the same basic footprint as a standard Arduino Uno,
and supports most Arduino shields and devices. The chipKIT Uno32 features 30
digital I/O pins and twelve 10-bit analog-to-digital input pins. Five of the digital
I/O pins can be configured to support pulse width modulation, and five digital
I/O pins can be configured to support hardware interrupts. The 12 analog pins
can also be configured as digital I/O pins. While the Uno32 is pin-compatible
with Arduino Uno shields, the additional I/O pins on the Uno32 are brought out
to a second row of header pins that are not on a standard Arduino. The chipKIT
Uno32 also features two hardware serial ports, along with an onboard real-time
clock calendar (RTCC). To enable the RTCC functions, a 32.768 kHz crystal
must be added to the chipKIT board in the appropriate location.

The chipKIT Uno32 is a 3.3 V board, but all pins are 5 V tolerant, meaning
that if you accidentally hook them to a 5 V input, no damage will occur to

2-10 Chapter 2

Figure 2.16 - chipKIT Uno32.

the chipKIT board. Unlike the Arduino Uno, to use pins A4 and A5 for PC
communications, jumpers must be set on the chipKIT board. The chipKIT
Uno32 also has a jumper-selectable option to allow the Uno32 to function as
either an SPI Master or SPI Slave device.

The Digilent chipKIT Max32
The chipKIT Max32 shown in Figure 2.17 is Digilent's variation on the

Arduino Mega. Based on the 80-MHz 32-bit Microchip PIC32MX795F512, the

Figure 2.17 - chipKIT Max32. [courtesy Digilent, Inc]

Arduino Boards and Variants 2-11

Table 2.1
Arduino Comparison Chart
Board Name CPU Type CPU Flash SRAM EEPROM Digital Digital Analog UART Voltage Board Year

Speed Memory (KB) (KB) 110 PWM Input (V) Footprint Released
(KB) pins pins Pins (inches)

ArduinoST ATmega1681328 16 MHz 16132 112 0.511 14 4 6 5 2.7 x 2.1 2007
Arduino Diecimila ATmega168 16 MHz 16 1 0.5 14 6 6 5 2.7 x 2.1 2007
Arduino Due AT91SAM3X8E 84 MHz 512 96 54 12 12 4 3.3 4 x 2.1 2012

(ARM Cortex-M3)
Arduino Duemilanove ATmega1681328 16 MHz 16132 112 0.511 14 6 6 5 2.7 x 2.1 2008
Arduino Esplora ATmega32u4 16 MHz 32 2.5 1 14 6 12 5 6.5 x 2.4 2012
Arduino Ethernet ATmega328 16 MHz 32 2 1 14 4 6 5 2.7 x 2.1 2011
Arduino Extreme ATmega8 16MHz 8 1 0.5 14 4 6 5 2.7 x 2.1 2006
Arduino Fio ATmega328 8 MHz 32 2 1 14 6 8 3.3 2.6 x 1.1 2010
Arduino Leonardo ATmega32u4 16 MHz 32 2.5 1 14 6 12 5 2.7 x 2.1 2012
Arduino LilyPad ATmega168/328 8 MHz 16 1 0.5 14 6 6 2.7-5.5 2 in. dia. 2007
Arduino LilyPad ATmega328 8 MHz 32 2 1 9 5 4 2.7-5.5 2 in . dia. 2012

SimpleSnap
Arduino Mega ATmega1280 16MHz 128 8 4 54 14 16 4 5 4 x 2.1 2009
Arduino Mega ADK ATmega2560 16 MHz 256 8 4 54 14 16 4 5 4 x 2.1 2011
Arduino Mega2560 ATmega2560 16 MHz 256 8 4 54 14 16 4 5 4 x 2.1 2010
Arduino Micro ATmega32u4 16 MHz 32 2.5 1 14 7 12 1 5 0.7 x 1.9 2012
Arduino Mini ATmega168 8/16 MHz 16 1 0.5 14 6 6 3.3 or 5 0.7 x 1.3 2008
Arduino Nano ATmega 168 16 MHz 16 1 0.5 14 6 8 5 1.7x0.73 2008
Arduino Nano ATmega328 16 MHz 32 2 1 14 6 8 5 1.7 x 0.73 2009

(version 3.0+)
Arduino NG ATmega8 16 MHz 8 1 0.5 14 4 6 5 2.7 x 2.1 2006
Arduino NG+ ATmega 168 16 MHz 16 1 0.5 14 4 6 5 2.7 x 2.1 2006
Arduino Pro ATmega328 8/16 MHz 32 2 1 14 6 6 3.3 or 5 0.7 x 1.3 2008
Arduino Pro Mini ATmega328 8/16 MHz 32 2 1 14 6 6 3.3 or 5 0.7 x 1.3 2008
Arduino Tre Sitara AM335x/ 1 GHz/ 32 2.5 1 14 7 12 5 not specified 2014

ATmega32u4 16 MHz
Arduino UNO ATmega328 16MHz 32 2 1 14 6 6 5 2.7 x 2.1 2010
Arduino USS ATmega8 16MHz 8 1 0.5 14 4 6 5 2.7 x 2.1 2005
Arduino Yun Atheros AR9331/ 400/16 MHz 32 2.5 1 14 7 12 5 2.7 x 2.1 2013

ATmega32u4
Serial Arduino ATmega 8 16 MHz 8 1 0.5 14 4 6 5 2.7 x 2. 1 2005
Adafruit DC ATmega328 16 MHz 32 2 1 14 6 6 5 3 x 0.8 2007

Soarduino
Adafruit USS ATmega328 16 MHz 32 2 14 6 6 5 3 x 0.8 2007

Soarduino
Solarbotics Ardweeny ATmega1280 16 MHz 32 2 14 6 6 5 1.6 x 0.54 2010
Microchip chipKIT

Max32
Microchip chipKIT

Uno32

Microchip 80 MHz 128 16 30 5 12 2 3.3 2.7 x 2.1 2011
PIC32MX320F128

Microchip 80 MHz 512 128 67 16 5 4 3.3 4 x 2.1 2011
PIC32MX795F512

Max32 has the same form factor as the Arduino Mega series and is compatible
with many Arduino shields, as well as the larger shields designed for the
Arduino Mega boards. The Max32 has 512 KB of fl.ash program memory and
128 KB of SRAM data memory, but has no onboard EEPROM. The Max32 has
67 digital 1/0 pins, sixteen 10-bit analog-to-digital 1/0 pins than can also be
configured to be digital 1/0 pins, and four hardware serial ports .

As with the chipKIT Uno32, the Max32 is a 3.3 V board. All pins are
5 V tolerant. The chipKIT Max32 also has a jumper-selectable option to allow
the board to function as either an SPI Master or SPI Slave device. As with the
Uno32, five of the digital 1/0 pins can be configured to support pulse width
modulation and five digital 1/0 pins can be configured to support hardware
interrupts for hardware program control. The Max32 also has an onboard real
time clock calendar (RTCC). To enable the RTCC functions, a 32.768 kHz
crystal must be added to the board in the appropriate location.

The Max32 includes several features not found on the chipKIT Uno32.
These include a USB On-The-Go (OTG) controller that allows the Max32 USB
port to act as a USB device, USB host, or USB OTG host/device. With the
addition of transceiver components, the Max 32 provides a 10/
100 MB/s Ethernet port and two controller area network (CAN) ports. CAN is

2-12 Chapter 2

a networking standard that was originally developed for use in the automotive
industry and is now finding its way into building automation and other
industrial applications.

The Max32 is programmed using the same custom version of the Integrated
Development Environment (IDE) used with the Uno32, the Multi-Platform
Integrated Development Environment (MPIDE). The MPIDE is backward
compatible with the standard Arduino IDE allowing most sketches written for
the Arduino to run on the Max32.

With so many versions of the Arduino and Arduino-compatible boards, the
comparison chart in Table 2.1 can be used to help you decide which board best
suits your project's needs

References
Adafruit Industries - www.adafruit.com
Arduino - www.arduino.cc
Atmel Corp - www.atmel.com
Atheros Communications - www.atheros.com
Diligent - www.digilentinc.com
Solarbotics - solarbotics.com
SparkFun Electronics - www.sparkfun.com
Texas Instruments - www.ti.com

Arduino Boards and Variants 2-13

CHAPTER 3

Arduino Shields, Modules,
and Devices

The power and simplicity of the Arduino is its ability to interface to a wide
variety of sensors and devices. While the list of devices you can interface to an
Arduino is seemingly endless and growing day by day, assembled here is a list
of the various Arduino shields, modules, and devices I have found to be useful
in ham radio projects.

Shields
As you begin to create projects with the Arduino, you may want to start

out with preassembled shields rather than design and wire up individual
modules and devices. Shields are boards designed to plug into the headers on
the Arduino main board and allow instant access to the features on the shield
without having to do any additional wiring. Multiple shields can be stacked one
on top of the other, adding functionality with each stacked shield; however, the
result can become cumbersome rather quickly and there is the risk of pin usage
conflicts between the various shields. Typically, you'll want to have only one or

Figure 3.1 -16 character by 2 line (16x2) LCD display. [courtesy .Adafruit Industries
(product code: 772)]

Arduino Shields, Modules, and Devices 3-1

3·2 Chapter 3

two shields stacked on the Arduino board. When your project expands beyond
that, it is best to use a protoshield (prototyping shield) or some other method
to move your project off the unwieldy shield stack and onto something more
functional. Shields are generally supported by program libraries and examples,
which allow you to quickly and easily develop working sketches.

LCD Display Shield
Probably the first shield you will use is an LCD display shield (Figure 3.1).

These shields integrate a Hitachi HD44780-compatible 16-character by 2-line
(16x2) LCD display onto the shield board. There are two main derivations on
the LCD shield. One shield variation communicates with the LCD using seven
digital I/O lines, while the other uses the PC bus to communicate with the LCD
serially using the SDA (pin A4) and SCL (pin A5) pins. Both versions have four
user-programmable pushbutton switches to provide input to the Arduino.

The Graphic LCD4884 Shield

The DFRobot Graphic LCD4884 shield (Figure 3.2) is an 84x48 pixel
graphic LCD display. Also known as the Nokia 5110 display, it communicates
via the shield interface using the SPI bus and can display both text and graphics.
The DFRobot shield also integrates a miniature five-way joystick on the shield
board along with six digital I/O and five analog I/O pins brought out to headers
on the shield itself.

Figure 3.2 - Nokia 5110 LCD shield. [courtesy. DFRobot (product
code: DFR0092)]

Figure 3.3 - ColorTFT shield. [courtesy Adafruit Industries (product code: 802)]

Color TFT Display Shield
New on the scene for the Arduino are the color graphic thin-film-transistor

(TFf) displays such as the one shown in Figure 3.3. These 18-bit (262,144
shade) color displays are currently available in 1.8 inch (128x160 pixels) and
2.8 inch (240x320 pixels). The display communicates with the Arduino via the
SPI bus and includes an onboard SD card slot you can use to hold and display
images. The 1.8 inch version of the shield also includes a five-way joystick,
while the 2.8 inch version incorporates a resistive touch screen. Using their
powerful libraries, these displays allow you to rotate the entire screen and draw
pixels, lines, rectangles, circles, rounded rectangles, and triangles. Of course
they also display normal text.

The 4D Systems adapter shield allows you to use a variety of color TFf
displays from 2.4 inches all the way up to 4.3 inches. The adapter shield
interfaces via the Arduino serial interface and uses serial commands to display
images, draw lines, rectangles, circles, and show text. Using the Arduino
libraries and the 4D Systems Workshop Integrated Development Environment
(IDE), you can create 4D Graphics Language (4DGL) display applications
quickly and easily.

Relay Shield
Controlling things is one of the reasons we got the Arduino in the first place.

Relays allow you the freedom to control high voltage and high current devices
that otherwise would turn your Arduino into a pile of smoldering mush if you
tried to connect them directly. The DFRobot relay shield (Figure 3.4) allows
you to control four onboard relays and includes test buttons and indicator LEDs.

Arduino Shields, Modules, and Devices 3-3

3-4 Chapter 3

Figure 3.4 - Relay shield. [courtesy DFRobot (product code:
DFR0144)]

Figure 3.5 - Motor shield. [courtesy DFRobot (product code:
DRI0001)]

As with the relay shield, the motor driver shield shown in Figure 3.5 allows
you to control motors from your Arduino. The Arduino motor driver shield can
drive two bidirectional de motors or one bipolar stepper motor.

Audio Shields
At some point you'll want your Arduino to make sounds or play audio in

response to the sensor inputs. With one of the various audio shields, you can
quickly and easily add high quality sound and music to your Arduino sketches.

The Adafruit wave shield (Figure 3.6) can play up to 22-kHz, 12-bit WAV audio
files that are stored in the onboard SD memory card. The SparkFun MP3 player
shield can store and play MP3 files from its onboard microSD memory card.

Ethernet Shield

The Arduino Ethernet shield (Figure 3.7) gives your Arduino access to the
Internet. With its powerful libraries and examples, you can tum your Arduino
into a web-enabled simple chat server, web server or telnet client. It can make

Figure 3.6 - Adafruit wave shield. [courtesy Adafruit Industries (product
code:94)]

Figure 3.7 - Ethernet shield.

Arduino Shields, Modules, and Devices 3-5

Figure 3.8 - USB
host shield.

Figure3.9-
Arduino WiFi
shield. [courtesy
www.arduino.cc]

3-6 Chapter 3

http requests and much more. The Ethernet shield also has an onboard microSD
adapter that can be used to store files and other data. Some of the Ethernet
shields also include an option to install a power-over-Ethernet (POE) module,
allowing your Arduino to be powered by other POE-enabled Ethernet devices.

The USB host shield (Figure 3.8) turns your Arduino into a USB host
device, allowing you to communicate with USB devices such as keyboards,
mice, joysticks, game controllers, ADK-capable Android phones and tablets,
digital cameras, USB sticks, memory card readers, external hard drives, and
Bluetooth dongles.

WiFi Shield
The Arduino WiFi shield (Figure 3.9) allows your Arduino to connect

Figure 3.1 O -
Solarbotics
microSD shield.
[courtesy
Solarbotics
(product code:
50833)]

Figure 3.11 -
Adafruit data
logging shield.
[courtesy Adafruit
Industries (product
code: 1141)]

to IEEE 802.llb/g wireless networks and supports WEP and WPA wireless
encryption. As with the Ethernet shield library, the WiFi library and examples
allow you to turn your Arduino into a web-enabled simple chat server, web
server, or telnet client. It can make http requests and much more. The WiFi
shield also has an onboard rnicroSD adapter that can be used to store files and
other data.

SD Card Shields

The SD card shields such as those shown in Figures 3.10 and 3.11 allow
you to interface standard and rnicroSD cards to the Arduino. With one of these
cards you can add mass-storage capabilities for FAT-16 and FAT-32 file access
and data logging. Some versions of the SD card shields also have an onboard
real-time clock calendar (RTCC) allowing you to timestamp your data and
provide date and time information for your Arduino sketches.

Arduino Shields, Modules, and Devices 3-7

3-8 Chapter 3

GPS Logger Shield
The Adafruit Ultimate GPS logger shield (Figure 3.12) combines a GPS

and a microSD card to create a full-featured GPS and data logging shield. The
libraries and examples included allow parsing of the GPS standard NMEA
"sentences" to read GPS data such as date, time, latitude, longitude, altitude,
speed, and other standard GPS data. In addition to data logging capability, the
SD library can be used to store files and other data.

Figure 3.12-Adafruit GPS logger shield. [courtesy Adafruit Industries
(product code: 98)]

Xbee Shield
The Xbee shield (Figure 3.13) allows an Arduino board to communicate

wirelessly using the ZigBee protocol. ZigBee is based on the IEEE 802.15
standard and is used to create a small "personal area network" suitable
for communication with remote sensors or devices. The Xbee shield can
communicate at a speed of 250 Kb/s at distances up to 100 feet indoors or
300 feet outdoors, and can be used as a serial/USB replacement or in a
broadcast/mesh network.

Argent Data Radio Shield
The Argent Data Radio shield can be used to provide AX.25 packet radio

send and receive capability to the Arduino. Packets are sent and received in
AX.25 UI frames at 1200 baud allowing operation on the VHF APRS network.
There are a number of projects that utilize this board in ARRL's Ham Radio for
Arduino and PICAXE by Leigh Klotz, WA5ZNU (www.arrl.org/shop, ISBN:
978-0-87259-324-4). The Argent Data Radio shield also includes a prototyping
area, and an HD44780-compatible LCD interface.

Figure 3.13 - Solarbotics Xbee shield. [courtesy
Solarbotics (product code: 50835)]

Figure 3.14-Arduino Uno sensor shield.

Arduino Shields, Modules, and Devices 3-9

1/0 Shields
The 1/0 shield is a great way to begin creating your own projects on the

Arduino (see Figures 3.14 and 3.15). The 1/0 shield brings all of the Arduino
pins out to groups of 3-pin headers, along with power and ground on each header.
This allows you to easily connect the Arduino 1/0 pins to your breadboard and
prototype boards for development. In the case of the Uno 1/0 shield some of
the pins are arranged by typical function, such as parallel LCD, serial LCD,
PC, COM, and so on. Once your development is complete, all you have to do is
remove the connecting wires and your Arduino is ready for the next project.

Figure 3.15 - Arduino Mega sensor shield.

Breadboard Shield

As you grow more confident and experienced in your Arduino adventures,
you'll want to be able to prototype and test your designs. For the smaller
projects that only involve a chip or two, I have found the breadboard shield
(Figure 3.16) to be a quick and simple solution. Smaller than a full size

3-10 Chapter 3

~ a ~ J • ~ a ~ » ~ X • T ~ 7

~ 2 2 i • A a • • C % a & I ~ • ~

~ ~ A 2 a A a ~ a r ~ W ~ • % a X

a a ~ J a m • ~ a s 2 a z i x • ~

~ i 2 ~ • • • • • • x • • • • s •

• ~ ~ a • • • s ~ • a ~ R : • s s
a ~ g ~ • » • 2 ' 2 • • • • a s ~

a ~ m , • ~ i ~ ~ ~ a • • 2 a x I

~ ~ • a ~ 2 a 2 ~ m • • • 2 • s x
m w • • • • 1 o & a •

Figure 3.16-Arduino breadboard shield.

breadboard and without the need for soldering, the breadboard shield allows
quick and simple setup and redesign of your project prior to taking it full scale.
When you're done, just as in a full size breadboard, simply remove the chips
and wires and it's ready for the next project.

Prototyping Shield

The final step in your project will usually require a more permanent solution
involving wiring and soldering components. I have found the easiest method to
interface my projects to the Arduino is to use the prototyping shield
(Figure 3.17). The protoshield brings all of the Arduino pins and voltages to
solder pads with the center of the board laid out like a standard prototyping
board. I like to solder header pins in the prototyping area so that I can wire
the Arduino pins to the header, and then use a connector to interface to my
off-board modules and components. This allows for easy troubleshooting,
reconfiguration, and replacement of the external parts when I happen to let the
smoke out of them occasionally.

Figure 3.17 - Arduino Uno protoshield.

Arduino Modules
While shields provide a quick and easy way to interface with the Arduino,

the real fun in the Arduino is interfacing with modules and additional
components. It is here that the real blending of computing and electronics takes
place. With just a handful of modules and parts, you can wire up some pretty
amazing projects. Most of the modules include libraries, which greatly simplify
communication between the Arduino and module, and you can create fully
functional projects in just a matter of hours.

Using individual modules and components also lessens the pain, if and

Arduino Shields, Modules, and Devices 3-11

when you do horrible things to your project. Shields tend to be more expensive
than individual modules and components. Since many shields use surface mount
components, when something goes wrong, usually the entire shield is dead and
you have to go buy another one. With the lower cost of individual modules and
components, fewer tears are shed and if you're like me, you probably have more
than one willing victim in your now rapidly growing supply of parts.

Fortunately, the Arduino, shields, and modules have proven to be quite
forgiving when miswired. As long as you pay attention to the 3.3 and 5 V power
supply differences between some of the modules and components, you have to
really work to damage them. I'm not saying it can't be done, and you would be
surprised at just how much smoke a teeny-tiny surface mount chip has inside,
but you really have to make an effort to make it happen.

Another major advantage of modules over shields is that projects using
shields tend to be bulky and unwieldy. Modules give you control over the size
and shape of your project, allowing you to determine what the end product
will look like. To this end, there are also a number of enclosures designed for
the Arduino and Arduino projects that can really spice up the look of your
completed project. In this section we will introduce and discuss the various
modules that I have found to be most useful for creating ham radio projects.

Displays
There are many display modules available for the Arduino, from the easy

to use basic two line text displays all the way up to the newer color graphic and
ePaper displays.

16-character by 2-line LCD Display

The most commonly used display for the Arduino is the Hitachi HD44780-
compatible 16-character by 2-line (16x2) LCD shown in Figure 3.18. A larger
16-character by 4-line (16x4) version of this display, shown in Figure 3.19,
is also available. Both types are interfaced using six digital 1/0 pins on the
Arduino - two pins for control, and four pins for data. Example sketches
for using this display are included in the Arduino Integrated Development
Environment (IDE).

A variation on the Hitachi HD44780-compatible LCD adds an PC
"backpack" module to the standard LCD, allowing you to communicate with
the display using the PC bus. This display requires only the Arduino SDA and

Figure 3.18 - 16 character by 2 line (16x2) LCD display.

3-12 Chapter 3

Figure 3.19-16
character by 4 line
(16x4) LCD display.

Figure 3.20 - 16
character by 2 line
LCD display with
12C backpack.

Figure 3.21 - 16
character by 4 line
LCD Display with
PC backpack.

SCL pins, and can share the 12C bus with other devices. As with the standard
Hitachi HD44780-compatible LCD, this display type is available in both 2 and
4-line versions (Figures 3.20 and 3.21).

20 x 2 Vacuum Fluorescent Display

If you want to give your Arduino display the "retro" look, you might want
to use a vacuum fluorescent display (VFD). The Samsung 20T202DAJA series

Arduino Shields, Modules, and Devices 3-13

Figure 3.22 - 20 character by 2 line vacuum fluorescent display.

is a 20-character by 2-line VFD display (Figure 3.22). This display interfaces
via SPI and is similar in display quality to the 16x2 LCDs, except that the VFD
is much brighter and can be seen in sunlight. Because it is a fluorescent display,
no backlight is needed.

Nokia 5110 Display
Originally used in the older Nokia cell phones, the Nokia 5110 84x48

pixel graphic LCD shown in Figure 3.23 is becoming one of the most popular
Arduino displays. Easy to interface to the Arduino using five digital 110 pins,
the Nokia 5110 is small, but easily readable. With the basic library using the
small font, you can display up to six lines of 14 characters each. There are many
different libraries available for this display, with some supporting the 84x48
pixel graphics capability. The Nokia 5110 is based on the Phillips PCD8544
LCD controller, and while specified for 3.3 V, the Nokia 5110 will work with
2. 7 to 5 V de without damage to the display. The contrast settings can vary
from display to display and most libraries allow you to control the contrast via
software with simple library commands. The Nokia 5110 module also has a

Figure 3.23 - Nokia 5110 LCD display.

3-14 Chapter 3

four LED backlight that can be controlled through use of an additional digital
1/0 pin.

Organic LED (OLEO) Displays

The organic LED (OLED) displays are small graphic LED displays that
can communicate with the Arduino using either the SPI or PC bus. The OLED
displays for the Arduino come in two versions, 128x32 pixels (Figure 3.24) and
128x64 pixels (Figure 3.25). An OLED display is essentially comprised of tiny
individual LEDs, and since it uses LED technology, does not need a backlight.
The libraries for the OLED displays allow you to show both text and graphics.
Using the small font, two or four lines of 21 characters per line can be displayed
depending on the OLED version. The OLED is an ideal choice when a small,
bright, and clearly readable display is desired.

Figure 3.24 -Adafruit 128x32 pixel organic LED display.
[courtesy Adafruit Industries (product code: 931)]

• • ••• •111•
• •
• • ., .

• •
• •
• •

Figure 3.25 - Adafruit 128x64 pixel organic LED display. [courtesy
Adafruit Industries (product code: 938)]

Arduino Shields, Modules, and Devices 3-15

Color TFT Displays
To really spice up your Arduino display, you can use a graphic color thin

film-transistor (TFT) display. The typical color TFT display for the Arduino is
available in sizes from 1.8 inches all the way to 4.3 inches.

The Adafruit color TFT displays such as the one shown in Figure 3.26 are
currently available in 1.8 (128x160 pixels), 2.2 (320x240 pixels) and 2.8 inches
(240x320 pixels), and offer 18-bit color resolution, yielding 262,144 different
color shades. These displays communicate with the Arduino using the SPI
interface and include an onboard microSD card slot. The 2.8 inch TFT from
Adafruit also has a touch screen interface, allowing you to really spice up your
Arduino projects.

The intelligent color TFT displays from 4D Systems are currently available
in 2.4 inches (240x320 pixels), 2.8 inches (240x320 pixels), 3.2 inches
(240x320 pixels), 4.3 inches (480x272 pixels), and a whopping 7 inches
(800x480 pixels), all capable of displaying more than 65,000 different colors
and include built-in touch screens and microSD card slots. The 4D Systems
TFT modules communicate over a standard serial port and are supported by
an extensive software library. Powered by the 4D Systems PICASO processor,
these modules also include additional onboard features such as two hardware
serial ports, 13 additional digital 1/0 pins, eight 16-bit timers, an FC master
interface, 14 KB of flash memory, and 14 KB of SRAM that is available for
program use.

Figure 3.26 -Adafruit colorTFT module. [courtesy Adafruit
Industries (product code: 1480)]

4D Systems VGA Display Modules
Okay, admit it. You've fantasized about what it would be like to have your

Arduino display on a standard VGA monitor. That was one of my earliest
"Wouldn't it be cool if..." moments with the Arduino. Then I discovered the
4D Systems uVGA-11 module (Figure 3.27) and that dream instantly became

3-16 Chapter 3

Figure 3.27 - 40 Systems uVGA II module.

a reality. Since upgraded to the uVGA-III, this standalone module accepts
standard serial commands and displays the output on a standard VGA monitor.
The uVGA-III supports resolutions of 320x240, 640x480, and 800x480 with
65,000 colors. Powered by the 4D Systems PICASO processor, the uVGA-
III includes 15 KB of flash memory and 14 KB of SRAM onboard available
for program use. The uVGA-III also includes two hardware serial ports, an
I2C master interface, 13 additional digital I/O pins, eight 16-bit timers, and a
microSD card slot. The uVGA-III comes with an extensive graphics library and
outputs to a standard 15-pin VGA monitor interface.

Arduino Shields, Modules, and Devices 3-17

As you can see, there are a number of display options available for the Arduino,
but the list of modules you can attach to your Arduino is not limited to just displays.

FTDI Module
The FTDI module (named after the Future Technologies Devices International

- FTDI - chip used on the module), is used to communicate with an Arduino
board that does not support a USB connection, such as the Ardweeny and DC
Boarduino. The FTDI module converts the USB data from your workstation to
standard TTL serial signals used by the non-USB Arduino. See Figure 3.28.

Figure 3.28 - FTDI USB-to-serial adapter.

Level Converter Module

You may run into the situation where you have a 3.3 V Arduino, such as the
Arduino Due, and need to connect to a 5 V module. Or you might have a
3.3 V module that you need to connect to an Arduino Uno. If you connect these
directly, you may cause damage to the Arduino or the module. Fortunately,
you can use a level converter module to quickly and easily convert between the

Figure 3.29 - 3.3 V to 5 V level converter.

3-18 Chapter 3

Figure 3.30 - Dallas
Semiconductor
(now Maxim
Integrated) 0518820
temperature sensor.

two signal voltage levels. The SparkFun logic level converter module shown in
Figure 3.29 can convert between 3.3 V and 5 V levels on four pins (two input
and two output). It can also be used to adapt 1.8 V and 2.7 V devices to 5 V.

Weather Sensors
Many hams have an interest in monitoring weather conditions, whether for

emergency preparedness or just plain old weather watching. The Arduino has a
wide array of sensors that can be used to monitor various weather-related data
such as temperature, relative humidity, barometric pressure, and other weather
related information.

DS18820 Temperature Sensor
The Maxim DS18B20 (Figure 3.30) is a self-contained single chip

temperature sensor that provides Celsius temperature readings from - 55 to
+ 125 °C (- 67 to +257 °F) with an accuracy of ±0.5 °C over most of that

range, and with a programmable resolution of 9 to 12 bits. The DS18B20
communicates with the Arduino using the Maxim 1-Wire interface and can
be located as far away as 200 meters. The DS18B20 can either be powered
normally with 3 to 5 V or powered parasitically, drawing power from the
data line itself. The DS 18B20 also has a programmable nonvolatile alarm
capability, based on upper and lower alarm trigger points. The One Wire and
Dallas Temperature Contro l Arduino program libraries greatly
simplify communication between the Arduino and 1-Wire devices such as the
DS18B20. Each 1-Wire device has a unique 64-bit serial number embedded
on the chip, allowing multiple temperature sensors to be accessed using a
single digital 1/0 pin on the Arduino. The OneWire library supports up to
127 1-Wire devices attached to the 1-Wire bus.

RHT03 Humidity!Temperature Sensor

The MaxDetect RHT03 shown in Figure 3.31 (also known as the DHT-
22) is a single-component humidity and temperature sensor that can provide
16-bit relative humidity (RH) readings with a resolution of 0.1 % RH and
an accuracy of ±2%. It also provides 16-bit temperature readings from-40
to +80 °C (-40 to +176 °F) with a resolution of 0.1 °C and an accuracy of
±0.5 °C. The RHT03 is powered with 3.3 to 6 V and communicates with
the Arduino at a distance of up to 100 meters via a single digital 1/0 pin
using the MaxDetect 1-Wire Bus protocol. It is important to note that the
MaxDetect 1-Wire Bus is not compatible with the Maxim 1-Wire Bus used
for devices such as the DS18B20 temperature sensor. Fortunately, there are
several excellent Arduino libraries for the RHT series of sensors that add
functionality to the RHT03, including the capability to calculate dew points
directly.

Arduino Shields, Modules, and Devices 3-19

3-20 Chapter 3

Figure 3.31 - MaxDetect RHT03
relative humidity and temperature
sensor module.

Figure 3.32 - Bosch BMP085 barometric
pressure and temperature sensor module.

BMP085 Barometric Pressure Sensor

The Bosch BMP085 barometric pressure sensor module measures
barometric pressure from 300 to 100 hPa (hectopascals) with an accuracy of
±1.5 hPa and a resolution of 0.01 hPa. The BMP085 also includes a temperature
sensor with a range of -40 to +85°C and an accuracy of ±2 °C at a resolution
of 0.1 °C. The BMP085 is self-calibrating and operates with a supply voltage
of 1.8 to 3.3 V (some modules also support 5 V) and communicates with the
Arduino using the FC bus. The program libraries for the BMP085 add the
capability to directly calculate altitude from the BMP085 data.

Direct Digital Synthesizer Modules
One of the more interesting modules for the Arduino is the direct digital

frequency generator (DDS) module such as the AD9833 module shown in
Figure 3.33. Using a DDS module, you can programmatically generate highly
stable waveforms of varying frequencies from a single reference clock. You
can use a DDS to generate various waveforms, including sine waves, square
waves, and in the case of some DDS modules, even triangle waves. The major
advantage of using a DDS module over processor-generated waveforms is that
the DDS chip offloads all of the frequency and waveform generation from the
processor and uses a 10-bit digital-to-analog converter to produce clean, stable
waveforms across the entire operating range.

While there are a number of DDS modules available, the three modules I
prefer to use in projects are based on the Analog Devices AD9833, AD9850,
and AD9851 DDS chips. The AD9833 programmable waveform generator

Figure 3.33 - Analog Devices AD9833 waveform generator
module.

Arduino Shields, Modules, and Devices 3-21

has dual 28-bit frequency control registers and can generate sine, square, and
triangle waves from 0 to 12.5 MHz with a resolution of 0.1 Hz. The AD9850
(Figure 3.34) has a single 32-bit frequency control register and can generate
sine and square waves from 0 to 62.5 MHz with a resolution of 0.0291 Hz.
Finally, the AD9851 (Figure 3.35) has a single 32-bit frequency control register
and can generate sine and square waves from 0 to 70 MHz with a resolution
0.04 Hz. All of these DDS modules also include the capability of shifting the
phase of the output waveform from 0-2n (0-720°) and are interfaced to the
Arduino using the SPI bus. While the software libraries available for the DDS
modules are somewhat lacking at the current time, there is a wide selection of
sample code available to help you on your way.

Figure 3.34 - Analog Devices AD9850 direct digital synthesis (DDS)
module.

Figure 3.35 - Midnight Design Solutions DDS-60 module using the AD9851 chip.

3-22 Chapter 3

@Sl<YLAB
SKM53

l
1

Ill II II I I Ill I II lllllllllllllllllllllilllllll Ill l\I
HBLAE-13311294

Figure 3.36 - SKYLAB SKM53 GPS module.

GPS Module

With a GPS module such as the one shown
in Figure 3.36, you can add all of the power of
a standard GPS to your Arduino, providing such
information as time (down to 11100 of a second),
latitude, longitude, altitude, speed, course, and
many other features of a standard GPS. These
GPS modules communicate with the Arduino via
a standard serial I/O port, typically with a default
speed of 9600 baud and they output standard
National Marine Electronics Association (NMEA)
NMEA-0183 messages. The TinyGPS and

TinyGPS+++ program libraries parse the NMEA messages sent by the GPS into
data that can be accessed using simple function calls from within your sketch.

Ernie 2 Text-to-Speech Module

Designed by Parallax in conjunction with Grand Idea Studios, the Ernie 2
text-to-speech module (Figure 3.37) allows you to add natural sounding speech
to your Arduino projects. Capable of speaking in English and Spanish, the
Ernie 2 features nine preprogrammed voice styles in addition to program control
of speech characteristics such as pitch, speaking rate, and word emphasis.

The Ernie 2 communicates with the Arduino using a standard serial I/O
port at a default speed of 9600 baud and includes an onboard audio amplifier
and audio jack. No program libraries are needed. All you have to do is send
the text to the serial port and the Ernie 2 converts it, along with any speech
characteristic commands, directly into speech.

Figure 3.37 - Parallax/Grand Idea Studios Ernie 2 text-to-speech module.

Arduino Shields, Modules, and Devices 3-23

Figure 3.38- Embedded Adventures AS3935 MOD-1016
lightning detector module.

Lightning Detector Module
The lightning detector module shown in Figure 3.38 is based on the

Austriamicrosystems Franklin AS3935 lightning detector sensor and can
detect lighting at a distance up to 40 km. The AS3935 is capable of detecting
both cloud-to-ground and cloud-to-cloud lightning. It includes an embedded
algorithm to reject man-made electrical noise and has program controllable
threshold settings. The AS3935 will statistically calculate the distance to the
leading edge of the storm and the estimated strength of the lightning strike. It
can communicate with the Arduino via either the SPI or PC bus.

Figure 3.39 - HMC5883L 3-axis digital
compass module.

3-24 Chapter 3

Digital Compass Module
The HMC5883L triple axis magnetometer module

(Figure 3.39) allows you to integrate the functions of a
digital compass into your Arduino projects. Through the
use of magneto-resistive sensors, the module can calculate
the magnetic force on the sensors and determine magnetic
North. The HMC5883L communicates with the Arduino
via the PC bus. Be careful with the supply voltage, as
the basic HMC5883L is a 3.3 V device, although some
modules now support 5 V.

Current Sensor Module

The INA 169 current sensor module (Figure 3.40)
allows you to measure de current flow in a circuit. The

Figure 3.40 - INA 169 current sensor
module.

Figure 3.41 - JY-MCU Bluetooth slave module.

Texas Instruments INA169 chip converts the de current flow across a shunt
resistor into an output voltage that corresponds to 1 V/A (volt per ampere) that
can be read using an analog input pin on the Arduino. Capable of monitoring up
to 5 A at a maximum of 60 V continuously, the load resistor on the module can
be changed to increase or decrease the sensitivity of the sensor.

Bluetooth Module
There are two forms of Bluetooth modules, slave and master. See Figure

3.41. A Bluetooth slave module allows you to pair and connect your Arduino
to a device such as a workstation or cell phone and have the Arduino act as
a mouse, keyboard, or any other human interface device (HID). A Bluetooth
master module allows you to pair and connect multiple Bluetooth slave modules
to your Arduino.

Some of the currently available Bluetooth modules can be switched
between slave and master mode from within your Arduino sketch. The

Arduino Shields, Modules, and Devices 3-25

Arduino communicates with the Bluetooth module using standard TTL serial
communication, usually at a speed of 9600 baud.

Be careful and look up the specifications for your particular Bluetooth
module, as some accept power in the range of 3.6 to 6 V, but only a maximum
of 3.3 V on the data pins. If you apply a 5 V digital 1/0 pin to a 3.3 V Bluetooth
module input pin, chances are you've just fried your module and it will be time
to dig another one out of your parts supply (I learned this lesson the hard way) .

. You can use a simple voltage divider network or a level converter module to
protect the data pins from overvoltage.

Real-Time Clock Calendar Module

The Arduino does not have a real clock onboard. It has a timer that keeps
track of the number of milliseconds since the last reset, power on, or sketch
upload. You can use this timer to keep track of time, but since it is volatile, it
isn't much use after a reset. To solve this problem, and to give your Arduino
true clock/calendar functionality, you can use a real-time clock/calendar module
(RTCC) such as the one shown in Figure 3.42. Many of the RTCC modules
are based on the Maxim DS 1307 RTCC chip and communicate with the
Arduino using the FC bus. This chip keeps track of time, day, month and year.
It includes leap year compensation and a calendar accurate to the year 2100 (at
which time there will be a huge market for Arduino Y2.1K bug fixers - mark
your calendars).

Figure 3.42 - TinyRTC real-time clock calendar/module.

3-26 Chapter 3

Figure 3.43 - SC card module.

Backed up by a lithium coin-cell battery, the DS 1307 can run and retain data
for a minimum of nine years. The DS 1307 also contains 56 bytes of battery
backed-up nonvolatile RAM (NVRAM) that can be used to store data. The
newer libraries for the DS 1307 include support for reading and writing to the 56
bytes of NVRAM.

SD Card Modules
SD card readers allow the use of SD and microSD cards with your Arduino

for read/write file access and data logging. While some of the various shields
and other modules include an SD card slot, often you cannot access the SD card
while using the primary device (often a TFf display). By using a standalone
SD card reader (Figure 3.43), you can communicate with the SD card and your
other SPI devices without this limitation. The standard SD and microSD card
modules communicate with the Arduino via the SPI bus and include onboard
level shifters to allow use at 3.3 or 5 V.

Motor Driver Module
The L298N dual motor driver module (Figure 3.44) has two onboard

H-bridges to control up to two bidirectional de or stepper motors. The
STMicroelectronics L298N can handle up to 50 V at 2 A per motor and is
controlled using six digital 1/0 lines (three per motor). Some modules also
include current sensing capability, allowing you to sense the current draw of the
motor while it is active.

Analog-to-Digital Converter Modules
The analog-to-digital (AID) converter in the Arduino is a single-ended

10-bit AID, providing a count of 0 to 1023 over a 5 V range with respect to

Arduino Shields, Modules, and Devices 3-27

3-28 Chapter 3

Figure 3.44 - Stepper motor driver board.

Figure 3.45 - Texas Instruments ADS1115 4-channel 16-
bit analog-to-digital converter module.

ground. For many projects, this resolution is more than adequate; however,
there will be occasions where you will want higher resolution on your analog
measurements. In the case of an antenna rotator position sensor, you will want
to read the position from 0 to 360° (or 450° in the case of some rotators). Using
a 10-bit AID, this leaves you with a resolution of about 1°. A 12-bit AID can
provide you with a resolution of about Yio0

, and a 16-bit AID will provide a
resolution of about Yioo0

• As you can see, the more bits your AID has, the higher
the resolution. While you may not need that level of resolution, in this case, it
will help to position your antennas more accurately.

The Texas Instruments ADS1015 12-bit AID module can provide a range of
0 to 4096 on four single-ended or two differential inputs with sampling speed
selectable up to 3300 samples per second. The Texas Instruments ADSl 115
16-bit AID module (Figure 3.45) can provide a range of 0 to 65535 on four
single-ended or two differential inputs with sampling speed selectable up to
860 samples per second. Both communicate with the Arduino using the PC bus
and feature six program-selectable gain settings from Y:i to 16, allowing you to
maximize the resolution of the attached sensors. The Arduino program libraries
for these modules allow you to control all of the internal parameters of the AID
chips and make using these modules in your sketches a snap.

Digital-to-Analog Converters

One thing I wish the Arduino had is a digital-to-analog (DIA) converter
output. In my lab, I have built multiple versions of DI A converters for the
Arduino, from a simple 8-bit resistor ladder all the way up to using a serial
DIA converter. Of these versions, I have found the Microchip MCP4725 12-bit
12C DI A converter shown in Figure 3.46 to be the simplest and easiest to use.

Figure 3.46 - Adafruit MCP4725
breakout board.

Arduino Shields, Modules, and Devices 3-29

Using the MCP4725 Arduino library and example sketches, you can quickly
and easily have your Arduino output analog voltages, sine waves, and triangle
waves.

Figure 3.47 - Atmel 24C64 64K
12C EEPROM.

Other Devices
There are number of individual chips and components you

may want to use in your Arduino projects. Here are a few that I
keep on hand in my parts supply.

As you may recall, some of the Arduinos and variants do not
have onboard EEPROM memory. To save data such as calibration
settings and other values that you don't want to go away after
a reset or power cycle, you can use a serial EEPROM (Figure
3.47). Available from Atmel and Microchip in sizes from 128 bit
up to 1 megabit, serial EEPROMs communicate with the Arduino
via SPI or FC, are well supported by Arduino libraries and are
easy to use.

12C Digital 1/0 Expanders

Sometimes, the 14 pins of digital 1/0 available on the standard
Arduino just aren't enough, and you don't want to splurge for a
Mega or a Due. Using an 8 or 16 pin UO expander chip may just
fit the bill and only cost you a couple of dollars. The Microchip

MCP23008 FC serial I/O expander chip (Figure 3.48) will add eight pins and
the Microchip MCP23017 (Figure 3.49) will add 16 pins of digital UO to your
Arduino. Fully supported by Arduino program libraries, the serial UO expander
chips communicate with the Arduino using the FC bus and have programmable
address settings, allowing for up to eight devices on a single FC bus. This
means you can add up to 64 or 128 pins of digital UO to your Arduino to handle
the biggest of Arduino projects. The MCP23S08 and MCP23S 17 provide
similar capability, but communicate using the SPI bus.

3-30 Chapter 3

Figure 3.48 - Microchip MCP23008 8-bit port
expander.

Figure 3.49 - Microchip MCP23017 16-bit port expander.

Analog Switch Chips

Your project may have a need to switch audio or other analog signals
but you don't want to waste the power and board space on a relay. For these
projects, there are the Analog Devices ADG888 CMOS switch (Figure 3.50)
and the IXYS LCC120 OptoMOS relays (Figure 3.51). The ADG888 is a
double-pole, double-throw (DPDT) CMOS chip designed for high performance
audio switching and has an ultralow "on" resistance of 0.8 n and is capable of
switching up to 400 mA at 5 V. The LCC120 is an optically-driven SPDT MOS
relay that has an "on" resistance of 20 n and is capable of switching 170 mA at
250V.

Digital Potentiometer Chips

Digital potentiometers allow your Arduino sketches to control the resistance
of a potentiometer, just as if you were turning the potentiometer manually. The

Figure 3.50 - Analog Devices ADG888
dual DPDT CMOS switch.

Figure 3.51 - OptoMOS relay.

Arduino Shields, Modules, and Devices 3-31

Microchip MCP42XXX series of digital potentiometers (Figure 3.52) are dual
256-step digital potentiometers, available in 10 kn, 50 kn, and 100 kn versions

Figure 3.52 - Microchip 8-bit digital
potentiometer.

-- ·---~
r.:. ;i,.,.~: I

Figure 3.53 - Maxim MAX7219 serial
LED driver.

,-, 1-.1 1-1 1-.1
1:1. 1:1. 1:1. 1:1.

Figure 3.54 - 7 Segment LED display.

- - ~ . ~!' ~:;.

' ' '
~ ' ·~ . ~ .L.

~ . : ' L!. - - =~

~ 1 ~ .. r: l .•

! -- r,_e 'l~

~ ~ . ~ H

... , -
I

Figure 3.55 - 8x8 LED matrix.

3-32 Chapter 3

(The last three digits of the chip number is the resistance
value) . These digital potentiometers communicate with
the Arduino using the SPI bus and are well supported by
Arduino libraries.

MAX7219 LED Driver
The Maxim MAX7219 (Figure 3.53) allows you to

drive up to eight 7-segment LEDs (Figure 3.54), multiple
bar graph LEDs, an 8x8 LED array (Figure 3.55), or
64 individual LEDs from a single chip. The MAX7219
communicates with the Arduino using the SPI bus and
handles all the decoding, multiplexing, and scan timing for
the LEDs on the chip itself.

Other Components
Some other components you will probably want in

your parts stockpile include the standard group of infrared
(Figure 3.56), ultrasonic ranging, proximity, motion, and
vibration (Figure 3.57) sensors. For motor driving, I like
to have some STMicroelectronics L298N H-bridge chips,
LG9110h Half-H-Bridge chips, and the Texas Instruments
ULN2003AN Darlington array chip on hand. When I need
to convert between TTL serial and RS-232, I like to use the
Maxim MAX232 dual receiver/driver chip.

In the area of general components, I also recommend
a stock of LEDs (red, green, blue, white, RGB, bar graph,
7-segment, and 8x8 array), diodes (silicon, Schottky,
Zener, and photo), 2N2222 and 2N3055 transistors for
relay driving and other high current needs, photoresistors,
capacitors (both ceramic and electrolytic), and 4N25
optoisolators to provide switching isolation between the
Arduino and things such as rig-keying circuits.

Don't forget an assortment of switches. In addition to
the standard mini switches, I like to keep a couple binary
coded decimal (BCD) switches (Figure 3.58) on hand,
to allow me to use one switch and four digital 1/0 pins
to select up to 16 settings. It's also good to have some op
amps on hand. I prefer the LM324 dual op-amp, and for
power audio applications I like the LM386 audio amplifier
chip. No parts bin would be complete without a couple
LM555 timers and NE567 PLL tone decoder chips.

For my projects involving Arduino protoshields, I
like to use the DuPont-style 2.54 mm-spacing pins and
housings, which allow you to easily disconnect the external
components as needed.

Figure 3.56 - Zilog passive infrared motion detector
module.

MEAS

Figure 3.57 - MEAS vibration sensor.

Figure 3.58 - Hexadecimal binary encoded switches.

Arduino Shields, Modules, and Devices 3-33

Enclosures
Once you've built your project, you have a number of enclosure options

available. Figures 3.59 to 3.70 show some of the wide variety of enclosures
available.

There are several enclosures for the Arduino Uno and Mega footprints that
allow you stack one shield on the processor board and still fit nicely in the
enclosure. This is why I prefer to build my projects with prototyping shields,
individual modules, and components. If you use a Mega-size enclosure with
an Arduino Uno, you have room for a 9 V battery, display, a module or two,
switches, and even a potentiometer allowing you to put a fairly complex project
into a nice looking enclosure.

Of course, there is even the ubiquitous Altoids mint tin insert for the Uno.
Everyone knows you have to have at least one Altoids mint tin project in your shack.

Figure 3.60 - SparkFun
project enclosure (product
code: 10088).

3-34 Chapter 3

Figure 3.59 - Arduino Uno in Altoids mint tin.

Figure 3.61 - SparkFun project enclosure (product code: 10088).

Figure 3.62 - SparkFun clear enclosure for
pcDuino/Arduino (product code: PRT-11797).

Figure 3.63 - Acrylic Arduino Uno enclosure.

Figure 3.64 - Acrylic Arduino Mega enclosure.

Figure 3.65 - Solarbotics S.A.F.E. Arduino Uno
enclosure (product code: 60100).

Arduino Shields, Modules, and Devices 3-35

Figure 3.66 -Solarbotics S.A.F.E. Arduino Mega
enclosure (product code: 60105).

Figure 3.67 - SparkFun Chameleon enclosure
(product code: PRT-09682).

3-36 Chapter 3

Figure 3.68 - SparkFun Crib enclosure
(product code: PRT-10033).

Figure 3.69 - Zigo Arduino Uno enclosure.

Figure 3.70 - Zigo Arduino Mega enclosure.

References
4D Systems - www.4dsystems.com.au
Adafruit Industries - www.adafruit.com
AMS - www.ams.com
Analog Devices - www.analog.com
Arduiniana - www.arduiniana.org
Arduino - www.arduino.cc
Atmel Corp - www.atmel.com
Bosch - www.bosch-sensortec.com
Crisp Concept - www.crispconcept.com
D&D Engineering - sensorguys.com
Grand Idea Studio - www.grandideastudio.com
IXYS Integrated Circuits - www.ixysic.com
Maxim Integrated - www.maximintegrated.com
Microchip Technology - www.microchip.com
Midnight Design Solutions - www.midnightdesignsolutions.com
Parallax - www.parallax.com
Pololu Robotics and electronics - www.pololu.com
RadioShack - www.radioshack.com
Skylab Technology Company - www.skylab.com.cn
Solarbotics - www.solarbotics.com
SparkFun Electronics - www.sparkfun.com
STMicroelectronics - www.st.com
Texas Instruments - www.ti.com
Tindie - www.tindie.com
Wikipedia - www.wikipedia.com
ZiGo - www.zigo.am

Arduino Shields, Modules, and Devices 3-37

CHAPTER 4

Arduino 1/0 Methods

The Arduino Uno sensor shield makes it easy to interface
devices and modules to your Arduino.

The ability of the Arduino to interface with so many different sensors and
devices is one of the main reasons for its popularity. The primary methods of
I/O on the Arduino are digital I/O, digital I/O with pulse width modulation
(PWM), analog input, and TTL/USB serial communication. The Arduino
supports several bus-type protocols, including the Serial Peripheral Interface
(SPI), Inter-Integrated Circuit (FC), and 1-Wire. The Arduino also supports
hardware and software interrupts, which allow program execution flow to be
changed (interrupted) by an external event.

Digital 1/0
The simplest and most common form of I/O on the Arduino is done using

the digital I/O pins. Using the onboard digital I/O pins, the Arduino can tum
on LEDs, relays, and other external devices with a single pin as well as sense
a switch, pushbutton, or other form of on-off (digital) input. Taken to the next
level, there are several program libraries for the Arduino that allow you to use
digital I/O to emulate TTL serial or SPI communication on pins other than the
pins designated for hardware serial and SPI communications. The Arduino

Arduino 1/0 Methods 4-1

4-2 Chapter 4

digital 1/0 pins also have an internal pull-up resistor (normally disabled) that
can be enabled via software. On the Arduino Uno, Mega, and Leo the value of
the pull-up resistor is 20 kn to 50 kn. On the Arduino Due, the value of the
pull-up resistor is 100 kn.

Digital 1/0 with Pulse Width Modulation
Six of the digital 1/0 pins (pins 3, 5, 6, 9, 10, and 11) on the Arduino Uno

can be configured to output data using pulse width modulation (PWM). PWM
allows you to control the duty cycle of a square wave output on the pin using an
8-bit value from 0 to 255. Using PWM, you can dim an LED, output an audio
tone, control the speed of a de motor, modulate a signal for an infrared LED
remote, and perform other tasks where you need to modify the duty cycle of the
output waveform. The Arduino Leo has seven PWM outputs, the Arduino Mega
has 14 PWM outputs, and the Arduino Due has 12 PWM outputs.

Analog Input
The Arduino Uno has six analog input pins. These pins convert an input

of 0 to 5 V (3.3 Von the 3.3 V Arduinos) into a 10-bit value of 0-1023. The
range can be modified either using an external reference voltage or selecting an
internal reference voltage of 1.1 V. The Arduino Mega also supports an internal
reference voltage of 2.56 V. The Arduino Leo, Mega, and Due each have 12
analog inputs onboard. The Arduino analog 1/0 pins also have an internal
pull-up resistor (normally disabled) that can be enabled via software. On the
Arduino Uno, Mega, and Leo the value of the pull-up resistor is 20 kn to
50 kn. On the Arduino Due, the value of the pull-up resistor is 100 kn.

Serial 1/0
The Arduino Integrated Development Environment (IDE) on your PC

communicates with the Arduino via the hardware serial port. Most Arduinos
communicate with the IDE via the USB connector. However some Arduinos,
such as the Solarbotics Ardweeny, require a USB-to-TTL serial converter
(FTDI module) to access the serial port. The USB port shares the hardware
serial port, located on pins 0 and 1 on the Arduino Uno.

The IDE can be used to upload sketches and also has a Serial Monitor
option that allows you to view the serial port data and to send serial data to the
Arduino. Because the Uno shares the serial port with the USB port, only one of
the two can be active at a time. To get around this limitation, you can use the
Software Serial program library, which allows you to assign any pair of
digital 1/0 pins as a software-driven serial port.

The Digilent chipKIT Uno32 has two hardware serial ports while the
Arduino Mega and Due each have four hardware serial ports onboard.

1 ·Wire Communications
The 1-Wire Interface was designed by Dallas Semiconductor Corp (now

part of Maxim Integrated Products) to provide low-speed data signaling and
power over a single data line. Typically used to communicate with small devices
such as temperature sensors, voltage sensors, current sensors, memory, and

other devices, the 1-Wire interface is actually a bus architecture implemented
with a single wire. With a data rate of up to 16.3 Kb/s, the 1-Wire bus can
communicate reliably with devices over 100 meters away from the host.

Each 1-Wire device has its own unique 64-bit serial number embedded
in the device, allowing many 1-Wire devices to be attached to the same bus
without the need to configure the device. Using an advanced algorithm, the host,
also known as the bus master, can quickly identify all of the devices attached
to the bus and determine their type based on the device type embedded in the
lower 8 bits of each device's serial number. This algorithm can scan the 1-Wire
bus and identify up to 7 5 sensors per second.

A unique feature of the 1-Wire interface is that many 1-Wire devices can be
powered entirely from the data line and do not need a separate supply voltage
to operate. Known as "parasitic power," a small capacitor (typically 800 pF) is
integrated within the device to store enough of a charge to operate the device
interface.

MaxDetect also makes a series of relative humidity and temperature sensors
that use a proprietary 1-Wire interface. The MaxDetect I -Wire interface is not
a bus architecture and the MaxDetect devices do not have embedded addresses,
meaning that you can only have one device attached to the interface at a time.
The MaxDetect 1-Wire interface does not support parasitic power mode and
must be supplied power on a pin separate from the data pin. The MaxDetect
1-Wire interface is not compatible with the Dallas Semiconductor 1-Wire bus,
so care must be taken when mixing these devices in your projects.

Both types of 1-Wire interfaces are supported by Arduino example sketches
and libraries, which makes interfacing and using 1-Wire devices in your
Arduino projects simple and easy.

Serial Peripheral Interface (SPI) Bus
The Serial Peripheral Interface (SPI) protocol was developed by Motorola

to be a high speed, full-duplex communication, bus-type protocol between
one master and multiple slave devices. The Arduino communicates with the
SPI devices on a single shared bus using four signal lines. The signal lines are
labeled Clock (SCLK), Slave or Chip Select (SS or CS), Master-Out Slave-In
(MOSI), and Master-In Slave Out (MISO). Each SPI device on the SPI bus
requires a separate Slave Select line.

SPI is a loosely defined standard and can be implemented in slightly
differing ways between device manufacturers. Since SPI is considered to be
a synchronous communications protocol, data is transferred using the SCLK
line, with no defined upper limit on speed. Some SPI implementations operate
at over 10 Mb/s. SPI has four defined modes (Modes 0, 1, 2, 3) which define
the SCLK edge on which the MOSI line clocks the data out, the SCLK edge
on which the master samples the MISO line, and the SCLK signal polarity.
Fortunately, the Arduino program libraries for SPI and the various SPI devices
handle the proper signaling required for the various devices.

On the Arduino Uno, the SCLK, MISO, and MOSI pins are permanently
defined as digital pins 13, 12, and 11 respectively. Digital 110 pin 10 is
often defined as the Slave Select pin for the first SPI device. On the Arduino

Arduino 1/0 Methods 4-3

4-4 Chapter 4

Mega2560, the SCLK, MOSI, and MISO are defined as digital 1/0 pins 52, 51,
and 50 respectively, with SS for the first SPI device typically assigned to digital
1/0 pin 53. On the Uno, Leo, Mega2560, and Due the SPI signals are also
brought out to the 6-pin In-Circuit Serial Programming (ICSP) header.

The Arduino Leo and Due do not have any digital 1/0 pins assigned for SPI.
Instead the SPI signals are brought out to the ICSP header only. Since each SPI
device attached to your Arduino requires a digital 1/0 pin assigned to the Slave
Select of each SPI device, your projects are limited to the number of digital 1/0
pins available.

There are several Arduino program libraries available that allow you to
software-define the SPI digital 1/0 pins and communicate with SPI devices on
those pins using software-based timing of the SPI signals (also known as bit
banging). With this method, the digital 1/0 pins are turned on and off manually
to simulate the hardware timing needed to communicate with the device. While
this method does work, it requires all of the bit timing and clocking to be
performed in software, which is much less efficient than the hardware-based
SPI method. It is far better to design your projects to use hardware SPI and use
software SPI communication only when required.

Inter-Integrated Circuit (12C) Bus
The Inter-Integrated Circuit (12C) bus was developed by Phillips (now NXP

Semiconductors) for attaching low-speed peripherals to a host device. On the
Arduino, the PC bus is also known as the Two-Wire Interface (TWI) bus. PC is
a serial bidirectional 8-bit communication protocol used by many manufacturers
developing peripherals and devices for embedded systems such as the Arduino.

PC requires only two communication lines, Serial Data (SDA) and Serial
Clock (SCL). On the Arduino Uno, these are defined as analog pins A4 and
A5 respectively. On the Arduino Leo, SDA and SCL are assigned to digital
pins 2 and 3 respectively. On the Arduino Mega2560 and Due, SDA and SCL
are assigned to pins 20 and 21 respectively. The Arduino Due has a second PC
interface, assigned to pins SDAl and SCLl.

The PC standard defines the speed of the PC bus as 100 Kb/s (Standard
Mode), 400Kb/s (Fast Mode), and 3.4 Mb/s (High Speed Mode). The Arduino
defaults to an PC bus speed of 100 Kb/s, but the speed can be changed by
modifying the internal Arduino Two Wire Bit Rate Register (TWBR) or the
TWI speed definition in the Arduino Wire library. Unless your project requires
it, it is best to not modify the Wire library, as it may cause issues when you
compile other projects using the same Wire library.

PC devices have a unique 7-bit address, with some devices capable of
having their PC address reassigned using jumpers, switches, or some other
hardware method, allowing you to have multiple devices of the same type
co-exist on the PC bus. On the Arduino, PC addresses 0-7 and 120-127 are
reserved, leaving 112 addresses available for devices. Every PC device connects
to the bus using open-drain outputs, requiring pull-up resistors on the bus,
typically 4.7 kn.

As with software SPI, there are several Arduino program libraries available
that allow you to software-define the PC digital 1/0 pins and communicate

with FC devices on those pins using software-based timing of the FC signals
(also known as bit-banging). With this method, the digital 1/0 pins are turned
on and off manually to simulate the hardware timing needed to communicate
with the device. While this method does work, it requires all of the bit timing
and clocking to be performed in software, which is much less efficient than
the hardware-based FC method. It is far better to design your projects to use
hardware FC and use software FC communication only when required.

Interrupts
While not a true 1/0 method, interrupts allow external conditions and

events to modify the way your sketches execute. The Arduino has two types
of interrupts - hardware and timer. Hardware interrupts are triggered by
an external event, such as a change in voltage level on a digital 1/0 pin. An
interrupt will pause the current program execution and execute a user-defined
function, known as an interrupt handler or interrupt service routine (ISR). When
the ISR is complete, program execution resumes the program at the command
that was executing prior to the interrupt. An interrupt can happen at any time
and allow you to respond to external events without constantly checking to see
if the desired condition exists.

There are four types of interrupt conditions that can be defined: Rising,
Falling, Change, and Low. These interrupts conditions refer to the state of the
digital 1/0 pin. The Rising condition will generate an interrupt when the pin
goes from a low state to a high state; Falling will generate an interrupt when
the pin goes from high to low. Change will generate an interrupt when the pin
changes from either low to high or high to low. The Low condition will generate
an interrupt when the pin is low. The Arduino Due has an additional interrupt
condition, High, which generates an interrupt when the pin is high.

The Arduino Uno has two interrupts, assigned to digital 1/0 pins 2 and 3.
The Arduino Leo has four interrupts, on pins 0, 2, 3, and 7, the Arduino Mega
has six interrupts, on pins 2 and 3 and 18 to 21. The Arduino Due allows you
to configure interrupts on all available pins. The Arduino Uno can also handle
Change interrupts on all 1/0 pins, but unlike the hardware interrupts, the ISR
function must decode the interrupt and determine which pin generated the
interrupt.

The Arduino Uno has three internal timers, defined as TimerO, Timerl,
and Timer2, which can be used to generate Timer interrupts. TimerO is
an 8-bit timer which is used by the Arduino for internal timing functions such
as delay () and mi 11 is () . Since it can affect these functions, modifying
Timer 0 settings is not recommended. Timer 1 is a 16-bit timer which is
used by the Arduino Servo library, and Timer2 is an 8-bit timer used by
the Arduino tone () function. As long as you are aware of any potential
interaction with these functions, you can modify the settings on Timer 1 and
T imer2 for use in your sketches. The Mega2560 has three additional 16-bit
timers- Timer3, Timer4, and Timers - which are not used by any
Arduino internal functions.

You can configure the timers to generate a software interrupt on overflow
or when the timer count matches a desired value. The timers are based on the

Arduino 1/0 Methods 4-5

4-6 Chapter 4

Arduino CPU clock rate, typically 16 MHz. You can use the timer counter/
control register (TCCR) for each timer to control the timer clock setting. By
modifying the three Clock Select bits, you can control how fast the timer
increments the counter. Available settings are Clk/1 (Clock speed), Clk/8,
Clk/64, Clk/256, and Clk/1024. At the maximum setting of Clk/1024, you can
have 16-bit Timerl generate a software interrupt approximately every 4.194
seconds. Using the Clear Timer on compare match (CTC) setting, you can
adjust the timer to generate an interrupt when the timer reaches a preset value.
Using 15624 as the preset value will cause the timer to generate an interrupt
once per second. Using a 1-second interrupt in this manner, you can add
precision timing to your sketches without having your sketches manually keep
track of time using the mi 11 is () function or other manual methods.

Implementing interrupts does add a level of complexity to your sketches,
and due to their asynchronous nature, interrupts can occur at any time. You will
have to remember and plan for this as you write and troubleshoot your sketches.
You can enable and disable the interrupts as needed within your sketches, to
allow for critical points where you don't want your main sketch loop to be
interrupted.

Used properly, interrupts can be a powerful tool in developing your Arduino
projects and once you get comfortable using them, you will find that interrupts
can help simplify your project development since you will no longer have your
sketches running in timing loops waiting for an event to occur. Instead, you can
have your sketch doing other things and only respond when the actual event
occurs.

References
1-Wire.org - www.1wire.org
Arduino - www.arduino.cc
D&D Engineering - sensorguys.com
Diligent - www.digilent.com
Maxim Integrated - www.maximintegrated.com
NXP Semiconductor - www.nxp.com
Solarbotics - www.solarbotics.com

CHAPTER 5

Arduino Development
Environment

Arduino programs, or sketches, are developed using the Arduino Integrated
Development Environment (IDE) running on a workstation. Derived from the
Processing Programming Language and Wiring projects, the Arduino IDE is
a cross-platform development tool that runs on Windows PC, Mac OS X, or
Linux workstations. There's even an IDE for the Arduino that runs on Android
devices. The Arduino IDE is used to compose sketches, connect to and upload
sketches to the Arduino, and to communicate with your sketches. The IDE
is available for download from the Arduino website (arduino.cden/main/
software).

The Arduino IDE includes a text editor to create your sketches. You
can select from more than 30 languages and even use your favorite external
text editor by changing the IDE preference settings. The Arduino text editor
includes syntax and keyword highlighting, brace and bracket matching to
identify program loops and if-then coding blocks, and it automatically indents
your program text based on the depth of the current program loop. Additional

#lr.c1u1'e '·:.;: .h'
.Or.elude ·:AS3B~.I\>

..
U)~··J ~ A$ln~! ~, Jl ;

ldtt1nt !RQ_?!ll .:! •• i ~:-. ~;; - '
#atftnt !i l?!'JL.0.Tl:_l'DI 1 : ·: ,:.•

fdthn-et. ·Jl<!;lin.'Jl_tJ.at: .:o -
l!t-trne .t.Sl?H_!:lltPG'i_IUGH Ox6,0xlt
f,Jc(u1!t Jr.j~9l!>_~Y_!'!IDOx~ , C>xft

<

. ;- ~:

,. " ·:·.: .~ . -.:-• ... ~ . _,

Figure 5.1 - Sample screen from the Arduino Integrated Development Environment.

Arduino Development Environment 5-1

5-2 Chapter 5

preferences can be set in the preferences.txt file located in c:\Documents and
Settings\<USERNAME>\Application Data\Arduino\ for Windows XP,
c:\Users\<USERNAME>\AppData\Roaming\Arduino\ for Windows Vista
and Windows 7, /Users/<USERNAME>/Library/Arduino/ for Mac OS X, and
-/.arduino/ for Linux. Only edit the preferences.txt file when the Arduino IDE
is not running as the file is re-written every time you exit the IDE. Figure 5.1
shows a sample IDE screen.

The Arduino IDE does more than just create sketches. The IDE has a
message area to provide feedback while saving and exporting sketches, and it
is where any error messages are displayed. The toolbar provides quick access
to the most commonly used IDE functions. The toolbar VERIFY function checks
your sketch for basic errors, but does not upload the sketch to the Arduino. The
toolbar UPLOAD function will verify, compile, and upload your sketch to the
Arduino board. It is important to note that the Arduino IDE performs an auto
reset on the Arduino board prior to uploading. Some older Arduino boards,
along with some of the variant boards, do not support the auto-reset function.
On these boards you will have to manually press the reset button immediately
prior to selecting UPLOAD in the IDE. The remainder of the IDE toolbar displays
the NEW, OPEN, and SAVE sketch file functions.

Menus
The FILE menu of the IDE is the usual area where you can create new

sketches, load and save sketches, print sketches, and set your IDE preferences.
The FILE menu also has a quick-access dropdown menu that lists the programs
in your sketchbook (the folder where the IDE stores your Arduino projects).
Another quick-access dropdown menu provides quick access to example
sketches that are typically provided with the various libraries installed in the
IDE. At the time this was written in early 2014, these dropdown menus don't
have scrolling capability due to a bug between the IDE and Java. There is an
enhanced version of the IDE in the Arduino forum (http://forum.arduino.cc/
index.php?topic=ll8440.0) that you can download and install, or you can use
the standard FILE/OPEN menu to select the desired sketch.

In addition to standard editing menu features, the EDIT menu allows you
to copy your sketch to your workstation's clipboard and reformat the text,
including the syntax coloring, in a form suitable for posting in the Arduino
forums and in an HTML format suitable for posting on web pages.

The SKETCH menu allows you to verify and compile your sketch as well
as providing a quick method to display the contents of the sketch folder on
your workstation. The SKETCH menu also allows you to add other code into
your project, which appears on separate tabs in the IDE text editing area. This
allows you to easily merge pre-existing sketches and code into your current
project. These added files can be Arduino code, C code (.c files), C++ code
(.cpp files), or header files (.h files). Also on the SKETCH menu is the IMPORT

LIBRARY function, which will install the selected library into the IDE and add
the #include declaration for the selected library at the start of your sketch.
Starting with IDE Version 1.0.5, you can also import libraries in .ZIP format.

The TOOLS menu is where you select the type of Arduino board you will

be programming and which serial port the board is attached to. If you don't
set these to the proper board and port, your sketch will verify and compile, but
the upload will fail. You can also add support for third-party hardware (such as
variant boards) by placing their board definitions, core libraries, bootloaders,
and programmer definitions into a sub-folder in the hardware folder in your
sketchbook. You can create the hardware folder if it does not exist and the IDE
will incorporate the new board into the IDE menus the next time the IDE starts.

A handy feature on the TOOLS menu is the AUTO FORMAT option. This will
reformat the text in your sketch so that the curly braces all line up and the text
within the braces is properly indented, making your programs easier to read,
which will help when troubleshooting your sketches. Another helpful utility on
the TOOLS menu is the ARCHIVE SKETCH option. This will create a copy of your
current sketch and save it in the current sketch folder as a compressed .ZIP file.

Also on the TOOLS menu you will find options to select the hardware
programmer used to upload and save your sketch. You will usually only need
to change this option when you are programming a board or chip that does not
use an onboard USB/serial port. This setting is typically used when burning the
Arduino bootloader. Since most of the Arduino boards you will be working with
already have a bootloader, the only time you will have to bum the bootloader
is if you are trying to recover an Arduino that has lost its bootloader or you are
programming a chip that does not already have a bootloader installed.

One of the most important options on the TOOLS menu is the SERIAL

MONITOR. The SERIAL MONITOR will display serial data sent from the Arduino.
Typically the SERIAL MONITOR is used to show basic program output and provide
debugging information. You can also use the SERIAL MONITOR to send characters
and commands to the Arduino serial port.

Arduino Libraries
Libraries are what make the Arduino so easy to program. Many of the

shields and devices you can attach to the Arduino are supported by program
libraries. By using an existing library, a large percentage of the programming
needed for a project is already done for you. Think of libraries as the core
building blocks of your Arduino sketches. All you have to add is a little "glue"
to tie the libraries into your project and you're done. This will save you hours
and days of deciphering datasheets and writing test code just to interface to a
new device. Now, all you have to do is get the library for the device, look at the
example code that comes with most libraries and start writing your sketch. In
many cases, you can cut and paste parts of the example sketch into your sketch
and have a completed, working project in a matter of hours.

There are many "official" libraries that come integrated with the Arduino
IDE when you install it, as well as a large number of "unofficial" libraries,
created and shared by the vast community of Arduino developers. Herein
lies the true power of the Open Source community. Because the Arduino is
Open Source, there are many hobbyists just like yourself out there, creating
projects with the same devices you are. Many of these hobbyists freely share
their projects and libraries, saving you from having to create your own. Since
everything is Open Source, you can take someone else's library and modify it

Arduino Development Environment 5-3

5-4 Chapter 5

further to suit your specific needs. In most cases, you will find that an existing
library supports all the functions of the device that you will need in your
project.

Internal Libraries
The Arduino IDE includes 16 libraries when it is installed. These libraries

are:
EEPROM - contains a set of functions for reading and writing data to the

Arduino's internal EEPROM memory.
Esplora - contains a set of functions for interfacing with the sensors and

switches on the Arduino Esplora board.
Ethernet - contains a set of functions for using an Arduino with an

Ethernet shield to connect to the Internet. The library allows you to configure
the Arduino to function as either a web server or as a web client.

Firmata - contains a set of functions to implement the Firmata
communications protocol for communicating between Arduino sketches and the
host computer.

GSM - contains a set of functions for using an Arduino with a GSM
shield. This allows the Arduino to act as a GSM phone, placing and receiving
calls and SMS messages, and connecting to the Internet over the GPRS
network.

Liquid Crystal - contains a set of functions for communicating with
Hitachi HD44780-compatible parallel LCD displays.

Robot_ Control - contains a set of functions to interface with peripherals
and devices on the Arduino robot control board.

Robot_Motor - contains a set of functions to inte1face with the Arduino
motor control board.

SD - contains a set of functions for reading and writing SD memory cards.
Servo - contains a set of functions to control servo motors.
SoftwareSerial - contains a set of functions to allow the use of serial

communications on 1/0 pins other than those normally used for serial
communication.

SPI - contains a set of functions used to communicate with SPI devices.
Stepper - contains a set of functions to control unipolar and bipolar

stepper motors.
TFT - contains a set of functions to draw shapes, lines, images, and text

on a thin-film-transistor (TFT) display.
WiFi - contains a set of functions to allow an Arduino with a WiFi shield

to connect to the Internet. The library allows you to configure the Arduino to
function wirelessly as either a web server or as a web client.

Wire - contains a set of functions to communicate with 12C devices.

Contributed Libraries
These are also a number of contributed libraries available on the Arduino

Playground website (http://playground.arduino.cc). The Playground is where
Arduino users can gather and share their thoughts, ideas, suggestions, and
Arduino code. There is a huge amount of information on the Playground Wiki,

including tutorials, how-tos, tips, tools, and libraries. Some of the contributed
libraries you may want to use in your projects are:

Adafruit_GFX - contains a set of functions to draw shapes, lines, images,
and text on Adafruit graphics displays.

AS3935 - contains a set of functions for communicating with the AS3935
Franklin lightning detector.

Bounce - used to debounce digital inputs.
CapacitiveSensor - allows you to tum two Arduino 1/0 pins into a

capacitive touch sensor.
FFT - contains a set of math functions allowing you to perform fast

Fourier transform (FFT) operations on your data.
Flash - contains a set of functions to store static strings, arrays, tables, and

string arrays in flash memory.
GLCD - contains a set of functions to support a large number of graphic

displays, including functions to draw shapes, lines, images, and text.
LCD _12C - contains a set of functions for communicating with Hitachi

HD44780-compatible PC LCD displays.
Messenger - used to parse serial text sent to the Arduino and place the

received data into an array.
Morse - generates Morse code from standard text.
OneWire - used to communicate with devices from Dallas Semiconductor

(now Maxim Integrated) using the 1-Wire protocol.
PCD8544 - contains a set of functions to draw shapes, lines, images, and

text on the Nokia 5110 LCD display.
PString - contains a set of functions to format text for output.
PS2Keyboard - used to interface a PS/2 keyboard to the Arduino.
Streaming - provides a set of functions to implement Java/VB/C#/C++

style concatenation and streaming operations.
Time - contains a set of timekeeping functions to allow your sketches to

keep track of time and dates with or without external hardware timekeeping.
Timer - used to create and manage software Timer interrupts.
TinyGPS and TinyGPS++ - provides a set of functions for

communicating with a serial GPS module.
Webduino - allows you to configure the Arduino with a Wiznet-based

Ethernet shield to function as an extensible web server.
XlO - enables communication with XlO home automation devices.
Xbee - enables communication with Xbee wireless devices.

Arduino Due Libraries
There also several libraries specific for the Arduino Due:
Audio - enables playback of .WAY audio files.
Scheduler - contains a set of functions to allow the Arduino Due to run

multiple functions at the same time without interrupting each other. ·
USBHost - enables communication with peripherals such as USB mice

and keyboards.

Arduino Development Environment 5-5

Creating Arduino Projects
Now that you know what the Arduino can do, how do you get started? By

now you've probably copied an existing sketch or run some of the examples, but
how do you create your own projects from scratch?

The first step is to sit back and map out exactly what your project should
do. Way back in the dear dead mainframe days, we flowcharted our programs
before we started doing any actual coding. Flowcharting is nothing more than
creating a block diagram for your programs. While I don't do any formal

Start

Do things that need to be
done before the Setup()

Loop

Setup

Do the things that need to
Be done in the Setup() loop

Loop

Things to be done in the
main Loop()

Yes

No

Do the rest of the main
Loop()

Figure 5.2 - Flowchart example.

5-6 Chapter 5

Do Option 1

Do Option 2

ARRL 1168

flowcharting with all of the "official"
flowcharting symbols when creating my
sketches, I do draw out a basic block diagram
of everything my sketch will do. I also draw
out a schematic for any circuits I will need to
attach to my Arduino. Doing this helps me to
break the project into smaller building blocks
while keeping track of everything the sketch
needs to do.

Doing all of this ahead of time helps you to
see if there is anything you have left out or if
you have made mistakes in the design, allowing
you to correct any issues before you get too
far along into your project. It's no fun to have
to completely start a project over because you
left out a critical function that can't easily be
corrected, or you've just miswired that $20 chip
and let all the smoke out.

The flowcharting process helps to
organize your thoughts and provides a
reference point as you create you sketch.
Done right, a flowchart such as the one in
Figure 5.2 will help break the sketch out into
bite-size pieces that are much easier to code
and troubleshoot. With flowcharts you can
determine what variables and variable types
you will need, what libraries your sketch will
need, and what 1/0 pins will be used. You can
determine if a part of the sketch should be a
function rather than part of the main loop, or
if the block of code would perform better if it
used interrupts.

Schematic drawings help to do the same
thing that flowcharts do, only for hardware.
Taking the time to draw a schematic like the
example in Figure 5.3 allows you to see how
all the parts interconnect and what 1/0 pins
you need to connect on the Arduino. Then,
when constructing your project, you can refer

+5V

I- - - - -SCL

,-----SDA R1 3

I AREF 4.7 kO

I I GND
2 U2

U2_1W DS18B20
RESERVED I I D13

IOREF I I D12

RESET
I I D11

3V D10

5V I I U1 D9

GND2 I I Arduino D8 +5V

D1 GND1 I I Uno R3
VIN I D7

1N4001 I D6 +12 Vdc
AO I I D5 In

I LS1
A1 I D4

C1 JP1 A2 I I D3
To

A3 I D2 12Vdc
A4/SDA- J 2

D1 Fan
A5/SCL- - J DO

01
TIP31

ARRL1169

Figure 5.3 - Schematic diagram example.

to the schematic and follow it step-by-step. This helps prevent wiring errors and
helps you to find any circuit design errors you may have overlooked. Having a
schematic has saved me more than once, as I was one wire away from hooking
12 V to a 5 V AID input before a recheck of the schematic diagram showed me
the errors of my ways. I'm sure that $15 AID module was happy I stopped to
draw a schematic.

You don't have to go into every detail, and you don't have to go so far as to
draw a full schematic with every pin labeled (although it does help). Instead,
you can just use block diagrams. You know an FC device will always need the
power, ground, SDA and SCL lines connected, so you can just draw one line
to represent those items. As you build more projects and become familiar with
the components you often use, you can use this form of shorthand to streamline
your creative process.

If you want to use a more formal method to create your circuit diagrams,
you can use the free version of CadSoft's EaglePCB software, or the Open
Source Fritzing program. Both allow you to create schematic drawings, board
layouts, parts lists, and can even generate a file you can use to have your project
commercially etched onto a circuit board. Fritzing has a unique feature that
allows you to create a breadboard image such as the one shown in Figure 5.4,
which will automatically draw a schematic that you can use to wire your circuit
on an actual breadboard. All you have to do is match up the breadboard image

Arduino Development Environment 5-7

SP1
Piezo Spkr

ARRL1099

LED 1
RGB LED Fan Speed Controller

1!2====·=··-·=·-·------t- -c:-c:_===-====
D1 1 N4001

Figure 5.4 - Fritzing diagram example for the circuit shown in Figure 5.3.

5-8 Chapter 5

to your real breadboard circuit. When you're ready to start soldering, just print
the schematic image and you 're good to go.

The method you choose to plan your projects is a matter of personal choice,
so use the method that works best for you. The key is to take the time to plan
everything out ahead before you begin constructing your project or coding
your sketch. A little bit of planning and documentation upfront can help keep
you from soldering or coding yourself into a comer and getting frustrated.
Remember, this is supposed to be fun. Using flowcharts and schematics can
help keep things organized and fun.

Memory Management Techniques
In many ways, programming with the Arduino is similar to programming

with the early microcomputers such as the 8080, Z-80, and 6502. Memory is
at a premium and when it's all used up, you're pretty much out of luck. When
you run out of memory in an Arduino sketch, there isn't the handy "Out of
Memory" error; instead your sketch just does strange things with no rhyme or
reason. You have to always keep in mind that 2 KB of RAM goes in a hurry
when you use a lot of strings and arrays.

Fortunately, with the Arduino, you can store static variables and constants in
the larger flash memory that the Arduino uses to store your compiled sketches.
This can be done using the PROGMEM keyword and including the avr I

pgmspace. h library in your sketch. The pgmspace library allows you to
store static variables, constants, strings, and arrays in flash memory instead
of RAM. You can also use the FLASH library to store string, array, table, and
string arrays in flash. Finally, you can also use the F () syntax for storing
string constants in flash. Remember, if it goes into flash, it cannot be modified
during program execution, so you can only use these functions for data that
doesn't change.

Keeping Track of Memory

Fortunately, there are ways you can keep track of the memory your sketches
are using. The MemoryFree library contains a set of functions that you can
use to display the amount of available RAM remaining. By including this
library in your sketch, you can experiment and see which coding method you
use results in the best utilization of RAM memory.

Simple Debugging Methods
One of the easiest ways I have found to troubleshoot sketches is to include

debug code that will print variables and other information as the sketch
executes. At the beginning of the sketch, I define a debug preprocessor directive
such as #define DEBUG and throughout my sketch, I check to see if the debug
value is defined using #ifdef and #endif statements. If my debug value is
defined, then I execute a small block of code or a function to print the relevant
data to the Serial Monitor. Then, when my sketch is debugged and operational,
all I have to do is comment out my debug preprocessor directive and the
compiler will ignore my debug print commands, automatically removing all
of the debug statements from the uploaded sketch, thereby saving valuable
memory space.

References
Arduiniana - www.arduiniana.org
Arduino - www.arduino.cc
Arduino Playground - playground.arduino.cc
CadSoft - www.cadsoftusa.com
Firmata - www.firmata.org
Fritzing - www.fritzing.org
Smarthome - www.smarthome.com
XlO - www.xlO.com

Arduino Development Environment 5-9

CHAPTER 6

Arduino Development
Station

As you begin to create your own Arduino projects, you will quickly find
that connecting all the pieces and parts together with jumper wires on a table
top doesn't quite do the job. It's all too easy for something to move, fall on
the floor, or short out and fry something. In true obedience to Murphy's Law,
that fried component will be the most expensive or irreplaceable part in your
entire project. Fortunately, the Arduino's size makes it ideal to create a mini
development station that can be set aside without having to tear apart your half
built projects in between development sessions.

Using a small piece of wood, you can tum your Arduino development
environment into a stable, portable platform that can be moved and put away
in between development sessions without having to take it all apart. Figure 6.1
shows my Arduino development station. Mounted on a 12 inch by 15 inch board,
I have included everything I use on a regular basis when developing my projects.

Figure 6.1 - The author's Arduino breadboard/development station.

Arduino Development Station 6-1

On my development board I have mounted an Arduino Uno, a chipKIT
Uno32, and an Arduino Due. Next to the Arduinos, I have mounted two sections
of 7 x 2.5 inch breadboard to use as a circuit design area. Also mounted on the
board are brackets to hold a 9 V battery and a servo. At the top of the board, I
have mounted a 16-character by 2-line serial FC LCD that I use in many of my
projects. Along the bottom edge of the board, I have a terminal strip to connect
wiring for motors and other devices too large to fit on the development board.

Typically, when I begin a project I wire it on a breadboard to create and test
my basic designs before moving my project to a more permanent solution. This
development board allows me to quickly wire and test my designs, move wires
to correct my mistakes, and when I am done, I can just put the development

• z • • • r s; • s; it • I;

board aside and start soldering
up the finished design onto a
protoshield.

• Jt • 2 • • • • • lt • • • x • • ll

When I am breadboarding
larger projects, I often use an UO
expansion shield on the Arduino,
which allows easy access to all of
the Arduino pins for connecting
jumpers between the Arduino and
the circuit on the breadboard.

•• Jt

• Jt 2 2 • • • • • ll Jt • • • • lt •

• • ll • lt • lt "

• • • • • • • • Jt • • • • • t lt

• ~ • • • • • • • • • • • • • lt lt

• • m m a a 2 a • m a • • a • a r
m m • • • • ~ m z 1 s; •

Figure 6.2 - Arduino breadboard shield.

Figure 6.3 - Arduino protoshield.

6-2 Chapter 6

For smaller and less
extensive projects, you can use
a breadboard shield. As shown
in Figure 6.2, this shield gives
you a small breadboard area
you can use to quickly wire up
your project similar to the larger
development station, without
taking up nearly the space.

When you have completed
and tested your prototype
project on the breadboard, you
may want to move it to a more
permanent solution. When using
an Uno or similar Arduino,
I like to use a prototyping
shield (Figure 6.3) to mount
my components and solder the
finished creation. This allows
me to permanently mount all
of a project's components and
easily remove the shield to make
any design changes or circuit
modifications. For external
components, I use the DuPont
style 2.54 mm-spaced pin
headers and sockets to connect

Figure 6.4 - Hot air soldering station

everything together. This allows me to quickly disconnect and reconnect
everything when making changes to the circuits on the prototyping shield.

Soldering Tools
For most of my life, I have used the old standard soldering pencil, which

has served me well over the years. When I tried my hand at soldering surface
mount components, I failed miserably with the soldering pencil and borrowed
a soldering station with a hot air gun. While my first attempt at surface-mount
soldering with the hot air gun is not something that will ever be seen in public,
it became obvious that a temperature-controlled soldering station with a hot
air gun attachment was the way to go. For about $75, I bought a temperature
controlled soldering iron station (Figure 6.4) with a hot air gun for whenever

Figure 6.5 - Digital multimeter.

I get brave enough to make another attempt at soldering
surface-mount components. The iron has interchangeable tips,
allowing me to quickly switch between tiny circuit board work
and welding coax connectors. Don't get impatient like me;
be sure to allow the soldering iron to cool before changing
tips. The hot air gun also comes with interchangeable nozzles,
allowing you to vary the size and pattern of the hot air. The hot
air gun also does great work on heat-shrink tubing and testing
temperature sensors.

Test Equipment
Regardless of how you create your projects, at some point

you will need to troubleshoot them. You don't have to spend
a ton of money on test equipment, but there is some basic
equipment you will want to have as you start creating your own
circuit designs.

Primarily, you will want a digital multimeter (DMM) such
as the one shown in Figure 6.5, which allows you to read volts,
ohms, amps, and check circuit continuity. It doesn't have to be

Arduino Development Station 6-3

6-4 Chapter 6

a high-end expensive meter, as most of the time you're just checking for zero,
3.3, or 5 Von an 110 pin, or checking the value of a resistor before soldering
it into place. Since they added that extra color band on resistors and messed
up everything I ever knew about resistors, I'm finding that I constantly have to
check with the meter to be sure I grabbed the right resistor.

As you move into more complex projects, you may find that an oscilloscope
(Figure 6.6) comes in really handy. An oscilloscope will allow you to see
signals on a visual display, usually in the form of a two-dimensional graph,
with the vertical axis displaying the voltage and the horizontal axis displaying
a function of time. This allows you to view actual waveforms and see signal
transitions. Many of the older oscilloscopes used a high persistence cathode ray
tube (CRT) to display the signal traces. While many of these older oscilloscopes
are still available at hamfests or online for $200 or thereabouts, unless you're
like me and just love using them, you really don't need such a serious piece of
test equipment to get the job done.

There are a number of USB oscilloscopes (Figure 6.7) that can be used with
a PC and will do nicely for what you'll be doing. Some cost less than $100. You
can even build your own oscilloscope with an Arduino using one of the many
projects online, plus you get the added satisfaction of using an Arduino project
to troubleshoot another Arduino project.

The difference between the PC-based oscilloscopes and the commercial
standalone oscilloscopes is primarily their upper frequency limit, or bandwidth.
The old standby Tektronix 465 has a bandwidth of 100 MHz, meaning it can
display signals up to 100 MHz, and the Tektronix 475 has a bandwidth of 200
MHz. As you may have guessed, the higher the bandwidth, the more expensive
they tend to get. The typical USB oscilloscope connected to your PC has a
bandwidth of about 1 MHz, while most Arduino-based oscilloscopes top out
around 200 kHz. Since the majority of your troubleshooting will be with much
slower signals, any of these oscilloscopes will do the job nicely.

Figure 6.6 - Tektronix 475 oscilloscope.

Figure 6.7 - USB oscilloscope [Pat Vickers, KD5RCX, photo]

References
Arduino Playground - playground.arduino.cc
Diligent - www.digilent.com
Instructables - www.instructables.com

Arduino Development Station 6-5

CHAPTER 7

Random Code Practice
Generator

The finished Random Code Practice Oscillator
mounted in a SparkFun pcDuino/Arduino enclosure.

Morse code, or CW as it is commonly called, has always been my first love.
My first rig back in my Novice days was a CW-only Heathkit HW-16. It didn't
have the external VFO, just a handful of crystals for 15 and 40 meters. All I had
for an antenna was a two-element triband beam for 20, 15, and 10 meters, so
40 meters was pretty much out of the question. With my three 15 meter crystals,
I hammered out many CW QSOs and had a blast. When I finally got my
General license, I discovered the joy of 2 meters and the local 2 meter RTTY
gang, so my CW skills faded into near uselessness in favor of the fancy digital
modes.

I've never lost my love for CW though, and keep promising myself I'm

Random Code Practice Generator 7-1

7-2 Chapter 7

going to get my act together one of these years and dive back in. The first step
of course, is to relearn all that I had forgotten. An Arduino-based Code Practice
Generator seemed like just the thing to get me back on track and use the project
to get familiar with the Arduino.

The first step was to sit down and flowchart what I wanted my sketch to
do (Figure 7.1). Once I had created my flowchart, the next step was to draw
out a quick block diagram (Figure 7.2) that I could use to create the schematic
diagram I would use to build the project.

Start

Include Libraries
Define Variables
Setup 12C LCD

I•

, r

Setup

Populate Character Array
Initialize 12C LCD

Seed Random Number Generator

- -

H

Loop

Read Speed Pot
Set CW Speed

Randomly Select Character
Send Character

Update Scrolling LCD Text

Figure 7.1 - Random Code Practice
Oscillator flowchart.

16x2 1
2C LCD

Arduino Uno

Potentiometer

1-.

-

I

ARRL 1090

Figure 7.2 - Random Code Practice Oscillator block diagram.

Using the Open Source Fritzing design tool, I created a visual representation
of how the project would be laid out on my breadboard (Figure 7.3). One of the
things I like about Fritzing is the way that you can visually create your design
as it would appear in real life, and Fritzing will draw the schematic for you.
Another handy feature of Fritzing is that it can create a Bill of Materials from
your finished diagram, so you'll know what parts you'll need to create your
project without having to keep track of all the individual parts manually.

Once I had created my Fritzing diagram, I printed out the breadboard
diagram and I was ready to begin creating my project. While it takes a while
to get used to laying out a project with Fritzing so things make sense, and
you may have to design some of your own icons for parts not in the Fritzing
component library (it's not that hard to do), Fritzing is a great tool to create
your breadboard diagrams. All you have to do is match your breadboard circuit
up to the diagram and your circuit is ready for testing. Figure 7.4 shows the
schematic diagram and parts list.

For this project, I wanted the Arduino to randomly select a character to

ARRL1091

Piezo Speaker

Code Practice Oscillator

SPST Switch

Figure 7.3 - Random Code Practice Oscillator Fritzing diagram.

Random Code Practice Generator 7-3

7-4 Chapter 7

LS1

..J<(U..0C")N~oaico r-.<0io~"'N~0 o
() 0 w z ~ ~ Ci ~ 0 0 0 0 0 0 0 0 0
(/) (/) ll'. (!) 0 0 0

I I <

I I
I I U1
I I Arduino Uno R3

I I
-c=--=--=--=--=--=--=--=--=--=--=--=---=; I

S1

+
- BT1 19V

ARRL1092

@ I I
6: I- <(_J
wu..ww N~ oo
(/) (/) 0 0 (/) (/)
wll'.oW>>ZZ~ o~NC")~i?)
ll'. - ll'. "' LO (!) (!) > <(<(<(<(<(<(

R1
5000 ~---

SPEED

R2

Figure 7.4 - Random Code Practice Oscillator schematic
diagram.
BT1 - 9 V battery.
01 - 1 N4001 diode.
LS1 - Piezo buzzer (Radio Shack 273-073 or equiv).
S1 - SPST toggle switch.
R1 - 500 n potentiometer.
R2, R3 - 4.7 kn, Vs W resistor.
U1 - Arduino Uno.
U2 -16-character x 2-line 12C LCD display.
SparkFun pcDuino/Arduino Project Enclosure, P/N: PRT-11797.
SparkFun pcDuino/Arduino Project Enclosure Extension Plate,
P/N: PRT-11798.

send, use an Arduino library to convert the character into Morse code and play
it as a tone on a speaker. I also wanted to be able to control the sending speed
and to display the sent characters on an LCD display for visual reinforcement
of what I was hearing. A brief Internet search provided me with the Arduino
Morse library by Erik Linder, SM0RVV, and Mark Vande Wettering, K6HX.
This library is simple and easy to use. All you have to do is include the library
in your sketch, define the digital 1/0 pin you wish to use, the sending speed,
and whether you want the library to send CW using a tone or a voltage that can
be used to key a relay or transceiver. Once setup, all you do is call the library's
send function with the desired ASCII character and it will output the Morse
code on the assigned pin.

For simple displays, I prefer the PC version of the Hitachi HD44780-
compatible 16-character by 2-line (16x2) display. This display is one of the
least expensive and most commonly used LCDs for the Arduino. I prefer the
PC version because it uses the SDA (A4) and SCL (A5) pins and doesn't tie up
any of the standard digital 1/0 pins. Since most of my projects don't need all six
analog input pins, and the standard version of the LCD needs six digital 1/0 pins
to communicate, the PC version allows me the flexibility to assign the Arduino
digital 1/0 pins to other purposes without sacrificing the simplicity and ease of
use of this display. The Arduino Playground has the LiquidCrysta l _ I2C
library to support the PC version of this LCD. All you have to do is include
this library in your sketch along with the built-in Wire library to support PC
communication and you 're ready to roll.

Once I had figured out all the pieces I would need to create the sketch, and
the electronics I would need to support the sketch, I began laying out the project
on the breadboard for testing. What I love about most Arduino projects is that
the actual wiring is usually simple and easy. The Arduino and libraries do most
of the heavy lifting for you. The key is to have your concept clearly laid out
ahead of time and the rest should go easy.

Creating the Sketch
Once you have the circuit wired up on the breadboard, you can begin to

create your sketch. Rather than print the entire sketch here, the completed
sketch and libraries for this project can be found in Appendix A, and are also
available for download from www.w5obm.us/Arduino.

Using the flowchart as a guideline, you can break the sketch out into smaller
building blocks, testing each block as you go along. At the top of the sketch,
you will find the usual library #include statements, variable definitions
and the object assignments for the LCD display. There are two key variables
defined in this section, the character array Code [J, and the string variable
text. The purpose of the Code [J array is to store the ASCII representation
of the numbers, symbols and characters we want our practice oscillator to send.
Placing the characters to send in an array allows us to use the Arduino's random
number generator function to randomly select the array element that contains
the character to send next.

As I began working with the LCD, I discovered an issue with scrolling the
LCD text. Many of the libraries for the Hitachi HD44780-compatible displays

Random Code Practice Generator 7-5

do not scroll the text on the display correctly and require both lines to scroll
simultaneously. Since I only wanted the top line to scroll and the current
sending speed to be displayed on the second line without scrolling, I had to
create my own scrolling function. The text variable is used to contain the top
line of information that will be scrolled from left to right as new characters are
sent.

As I began to test my sketch, I discovered that it was not sending the correct
CW for certain characters. Testing each character individually, I discovered
that the Morse library was not converting these characters to CW correctly.
Digging through the library, I found that the CW translation for the characters
in question was incorrect. I'm not the world's best at deciphering C++ code, but
once you get used to it, you can usually get yourself in the area you're looking
for, so there's really no reason to fear libraries if you have to go digging into
them for any reason. After figuring out how the library converted the text to
CW and correcting the encoding value for the incorrect characters in the
Morse . h file, the library would now send the correct CW for the desired
characters. When you build this project, be sure to use the Morse. h library in
Appendix A or download this library from www.wSobm.us/Arduino.

In the Setup portion of the sketch, we need to populate our Code [] array
with the letters, numbers and symbols to send. Rather than load each character
individually, a f or () loop is used to cycle through the ASCII values for the
characters to place into the Code [] array. On the Arduino, the pointer to the
first element in an array starts at 0, ie Code [0], and increments upward from
there. Since the numbers are decimal ASCII values 48-57 and the symbols for
comma, dash, period, and slash are 44-4 7, we can have the first for () loop
place the values 44-57 in the first part of the Code [] array. A second for ()
loop places the ASCII values of 65-90 for the characters A-Zin the next part
of the Code [] array, and finally, the ASCII value of 63 for the question mark
is placed as the final element in the Code [] array. The Code [] array now
contains 41 entries, each corresponding to a different ASCII character value.

II populate the array containing the characters to use (0-9 , . I ? A-Z)

for (int x = 0 ; x<l4 ; x++) II 0- 9, -. I

Code[x] = char(44 + x);

for (int x = 14 ; x<40 ; x++) II A-Z

Code[x] = char(Sl+x);

Code [40] char(63); II add? character

7-6 Chapter 7

The last step in the Setup loop is to randomize, or "seed", the Arduino
random number generator we will be using to randomly select the character
to send. The Arduino, like many computers, does not generate a true random
number. Instead, the Arduino random () function returns a pseudo-random

II randomize

number that will repeat the exact same sequence of random numbers every time
the Arduino resets. To add a more realistic randomness to the sequence, you can
seed the random number generator using the randomSeed () function with
a value, thereby altering the starting point in the pseudo-random sequence. A
simple way to randomize the Arduino random number generator is to read an
unconnected analog input pin and use the value returned as the seed value for
the random number generator.

randomSeed(analogRead(l)); II Seed the Random Number Generator

The main loop is where it all comes together. The first thing we do is read
the value of the SPEED potentiometer. The SPEED potentiometer varies the
voltage on the analog input pin from 0 to 5 V. The Arduino 10-bit analog-to
digital converter (ADC) will convert this voltage into a value from 0 to 1023.
Rather than trying to figure out what voltage equates to the desired speed, we
can use the map () function to do the work for us. For this project, I wanted the
code speed to be variable between 5 and 35 words per minute (WPM).

II Read the potentiometer to determine code speed

key_speed map(analogRead(0),0,1023,5,35);

The map () function translates the value of the SPEED potentiometer analog
input to a number from 5 to 35. This number is used to set the speed used by the
Morse library in words per minute. For this project, the speaker is connected
to digital 1/0 pin 11, so the Morse library is configured to send a tone to the
speaker connected to that pin.

II Set the Code Library to Beep on Pin 11 at the selected Key Speed

Morse morse(beep_pin, key_speed, 1);

Once we have set up the Morse library for use, we next need to randomly
select the ASCII value of the character we want to send. Since we know we
have 41 elements in the Code [] array, we can have the Arduino random
number generator select a random number between 0 and 40. This value will
be used as the index of the Code [] array and the ASCII value of the selected
character to send is placed in the variable c.

II Randomly pick a character from the character array

index= int(random(41));

c = Code[index]; II Assign the value of the selected character to c

Before the character is actually sent, it is displayed on the first line of the
LCD along with the sending speed displayed on the second line. As I mentioned
at the beginning of the project, many of the libraries for the Hitachi HD-44780
LCDs don't handle the scrolling correctly, so I had to create my own code
to scroll only the first line of the LCD from right to left. The text variable
contains the last 16 characters that have been sent. When sending the next
character, the first character in the text string variable is trimmed off using the

Random Code Practice Generator 7-7

Arduino substring () function and the current character to send is added to
the end of the text string. The string is then sent to the LCD display, which
will then appear to be scrolling the text on the top line.

II Assign the text to display on line 0.

II When length = 15, trim and add so display appears to scroll left

if (text.length() >15)

{

text= text.substring(l,16); II Drop the First Character

text = text+ String(char(toupper(c))); II Add the character to the string

lcd.setCursor(0,0); II Set the LCD cursor to 0,0

lcd.print(text); II Display the CW text

Finally, the character is sent to the Morse library, which will send the
character in Morse code on the speaker.

morse.send(c); II Send the character in CW

7 -8 Chapter 7

When the character is sent, the Arduino will repeat the main loop and
continue to send and display random Morse code endlessly.

Finishing Touches
Once I have the project working on the breadboard, I like to move the

finished project into an enclosure so it can be put to actual use. For most of my
projects that use the 16-character by 2-line LCD, I like to put them in the Clear
Enclosure for pcDuino/ Arduino from SparkFun (part number: PRT-11797).
This enclosure is designed for the Arduino Uno footprint and also has a handy
Extension Plate (part number: PRT-11798) that adds an extra Ys inch of overall
depth to the enclosure, allowing a little extra headroom for shields and other
components that might not fit inside the standard enclosure.

Before I move the project from the breadboard to the enclosure, I create
the final working version of the project schematic using CadSoft's free EAGLE
Light Edition Schematic Editor. This program allows you to create professional
looking schematics in a matter of minutes. Once your schematic is complete,
you can also create a PC board design file that can be used to have your finished
design etched by a commercial PC board etching service. The free version of
EAGLE Light Edition limits you to noncommercial use; board size is limited to
100 by 80 mm (4 by 3.2 inches), and a maximum of two layers on a single sheet
drawing. EAGLE Light Edition runs on Windows XPNista!Windows 7, Mac OS
X, and Linux.

Using my printed schematic as a guide, I wire up the enclosure and the
Arduino Uno. I like to use a prototyping shield (Figure 7.5) stacked on top of
the Arduino to wire up my projects. I then solder the components and header
pins to the protoshield. The header pins are used to connect to the external
components that are mounted to the enclosure itself using DuPont-style
2.54 mm spaced cable housings and socket pins. This allows me to easily

Figure 7.5 - Random Code Practice Oscillator assembled on the prototyping shield.

remove the prototyping shield to correct the inevitable wiring errors and make
any modifications to the project. You will notice that there are white marks on
one end of the board headers and connector sockets. These marks are to indicate
pin 1 on the various connectors to help keep me from connecting things up
backward and letting the smoke out.

After wiring up the prototyping shield, I install it and the Arduino Uno into
the enclosure, build cables (old PC floppy drive cables work great for this) and
connectors for the external components, and mount the external components to
the enclosure.

The clamshell style of the enclosure for this project makes troubleshooting
easier, as you can have your project open to access the various pins and
connections for troubleshooting while the project is powered up and running.
Figures 7.6 and 7.7 show the finished Random Code Practice Oscillator.

When you've finished your wiring and testing, button up the enclosure and
you now have a fully functional Random Code Practice Oscillator in a nice
looking rugged case. One of the more interesting side effects of this project
came when I was doing some final testing and letting it run on the test bench
while I was soldering another project up at the soldering bench. After about
an hour of hearing random CW in the background, I found myself copying the
code in my head. Leaving the project running, I would turn the speed up a notch
every now and then. At the end of just a few hours, my code speed had gone
from about 10 WPM up to 18 WPM and I was copying it 100%.

Continuing the experiment, I let it run in the background for a day or so,
gradually increasing the speed. At the end of this experiment in mental osmosis,

Random Code Practice Generator 7-9

Figure 7.6 - Inside view of the Random Code
Practice Oscillator.

Figure 7.7- Inside view of the Random Code
Practice Oscillator showing the two-line LCD
display in action.

I was copying about 23 WPM in my head. Since the characters are random, you
can't guess what the next letter will be, which apparently enhances the learning
process, as you have to copy each character as it was sent. Now, if I can get my
sending speed to match my receiving speed, I'll be ready in time for next Field
Day.

Enhancement Ideas
As we discussed in the introduction to this book, the projects are functional

and complete as they are, but there will be room for you to take the existing
project and make it better. As it stands, the Random Code Practice Oscillator is
pretty complete. There's really not a whole lot that I would do to add features to
it. One possible enhancement would be to replace the Arduino Uno with a Nano
or similar version of the Arduino and shrink it all down into a smaller box and
use a smaller display such as the Nokia 5110 or one of the tiny OLED displays.
I'll leave the packaging up to you. Enjoy!

References

7-10 Chapter 7

Arduino Playground - playground.arduino.cc
CadSoft - www.cadsoftusa.com
Fritzing - www.fritzing.org
SparkFun Electronics - www.sparkfun.com

CHAPTER 8

CW Beacon and
Foxhunt Keyer

The finished CW Beacon and Foxhunt
Keyer mounted in a SparkFun project
enclosure.

Continuing on the CW theme, my friend and fellow Arduino builder Tim
Billingsley, KD5CKP, operates a 10 meter beacon on 28 .215.5 MHz. Whenever
10 meters opens up, he gets reports from all over the world with just 3 W.
Unfortunately, the beacon is finicky at times and has to be kicked back to life on
a regular basis. At the same time, there has been an upswing in interest among
the local clubs to conduct transmitter hunts (foxhunts). This sounded like a
perfect opportunity to build a small CW Beacon and Foxhunt Keyer with the
Arduino.

CW Beacon and Foxhunt Keyer 8-1

8-2 Chapter 8

Starting out with the usual flowchart (Figure 8.1), I originally designed a
monster, with a scrolling organic LED (OLED) display and all sorts of bells
and whistles. Soon, my design had expanded beyond the capacity of the small
Arduino enclosure I had originally envisioned for it, so I had to go back to the
drawing board and rethink exactly what I was trying to accomplish. In the end,
with the consideration that this was to be a small, rugged, portable device, the
design was simplified to be a simple beacon keyer to drive a keying relay and
CW tone generator to create the modulated CW tones needed to key a 2 meter
handheld transceiver.

Start

Include Libraries
Define Variables

Set Beacon or Foxhunt Mode
Setup Morse Library

Define Functions

Setup

Setup Digital 1/0 Pins
Turn Off All Outputs

Turn RGB LED To Green
Reset The Timer

Loop

Check Timer
Set the Keying Mode

Send Message
Change LED color while sending

Reset Timer and wait for next interval

ARRL 1093

Figure 8.1 - CW Beacon and Foxhunt
Keyer flowchart.

Keeping the concept as simple as possible, I next created the circuit block
diagram in Figure 8.2. To display the status of the project, I decided to use an
RGB LED (red-green-blue), allowing me to display the various states of the
keying cycle. Since the time intervals, mode, and beacon text would not need
to be switch-selectable, they would be hard-coded within the sketch and could
easily be changed as needed.

ARRL1094

RGB LED

1-----t• Keying Out

Arduino Uno

------Audio Out

Figure 8.2 - CW Beacon and Foxhunt Keyer
block diagram.

Figure 8.3 shows the Fritzing diagram for the project. To keep the beacon
keyer as versatile as possible, a signal relay driven by a 2N2222A transistor was
used to isolate the Arduino keying signal from the transmitter. This circuit is a
good idea anytime you want to drive a relay, as the Arduino digital VO pins can
only drive 40 mA. Using a transistor to key a relay requires much less current

Audio Out RGB LED

CW Beacon/Foxhunt Keyer

DIP Relay

Keying Out

Figure 8.3 - CW Beacon and Foxhunt Keyer Fritzing diagram.

CW Beacon and Foxhunt Keyer 8-3

#define blue 7

#define green 8

#define red 9

8-4 Chapter 8

and helps keep you from drawing too much current and damaging your digital
1/0 pin. A relay also isolates the Arduino I/O pin from your transmitter, keeping
potentially damaging voltages at bay. This keying relay will be used to either
act as a CW key for the beacon transmitter or as the push-to-talk (PTT) keying
on the foxhunt radio.

A potentiometer was placed on the audio output to allow the output level to
be adjusted to whatever signal level the foxhunt transmitter would need. Note
that each color section of the RGB LED has its own current-limiting resistor. At
first glance, you might be tempted to use just one resistor on the common-anode
side. While this works if you only have only one LED on at a time, if you ever
want to start blending colors, you will need separate current-limiting resistors of
different values to properly set the current for each LED as each color requires
a slightly different resistor value for optimum performance and color intensity. I
got in the habit of using a current-limiting resistor on each LED, just case I ever
do want to blend or fade between colors at a later date.

Creating the Sketch
Once I had laid out the circuit on my breadboard to match the Fritzing

diagram, it was time to write the Arduino sketch. The entire CW Beacon and
Foxhunt Key er sketch and the Morse library are in Appendix A and at www.
wSobm.us/ Arduino. The CW Beacon portion of the sketch was to repeat the
beacon message at a selected interval, while the Foxhunt section was to repeat
the message for a selected interval, then go silent for different time interval.
Since the Arduino does not have a real time clock, there would need to be some
way to keep track of time. Fortunately, for a simple project, high accuracy in
the timing is not critical, so I was able to use a simple function to calculate time
intervals using the mi 11 is () function.

As with the Random Code Practice Oscillator project, at the heart of
everything all we are doing is converting text to a CW message, so we can
use the same Morse library we used in that project. Since there is no display,
the RGB LED would be used to indicate the status. Green would indicate
that the keyer was operational and waiting to send a message. Blue would be
used to indicate that the keyer was sending a beacon message, and red would
be used to let us know that the keyer was sending the modulated CW audio
foxhunt message. The LED on/off and color selection will be handled by the
ledOf f (), ledRed (), ledGreen (),and ledBl ue () functions so that
we don't have to control all three LED digital I/O lines from within the sketch
itself.

Starting out with the sketch, to keep things simple and readable we assign
definitions to the LED pins. This will allow you to program the digital I/O pins
associated with the LED pins by color rather than by a number.

II Blue Led Pin

II Green LED Pin

II Red Led Pin

Next, we define the constants that set the keyer to Beacon or Foxhunt
mode, the beacon message, the size of the message array, the keying speed,

the timer interval, and the number of seconds to repeat the message until the
timer interval expires. We also define the digital 110 pins assigned to the keyer
outputs.

const int mode= 0; II Mode 0 =Beacon 1 = Foxhunt

const char beacon_cal l[J = "DE KWSGP Beacon"; II Message to Send

const int key_speed = 20; II CW send speed

int interval= 10; // Timer interval in seconds

int repeat= 1; //Repeat message time in seconds must be a minimum of 1

const int beep_pin = 11; // Pin for CW tone

int key_pin = 12; // Pin for PTT/Rig Key

long end_time; II Foxhunt timing

char c; II Character to send

bool first_pass =true ; // Flag to tell us this is the first time through

unsigned long offset= OL; // Timer value

Morse morse(beep_pin, key_speed, 1); II Set up the Morse Library for use

int msg_length; //variable to hold the size of the message text array

The timer () function will return the time in seconds since the timer was
reset by the TimerReset () function. This is how the keyer keeps track of the
various time intervals. When the TimerReset () function is called, it doesn't
actually reset anything. All it does is set the offset variable to the current
mi 1 1 i s () value, which equates to the current time in milliseconds since the
Arduino was last reset. We then use this offset value to calculate our timing
intervals.

II Timer function - returns the time in seconds since last Timer Reset

unsigned long Timer()

return (millis()- offset) / 1000; // return time in seconds

II Timer Reset function

void TimerReset(unsigned long val OL)

offset millis () - val;

CW Beacon and Foxhunt Keyer 8-5
/

void setup ()

In the setup () loop, the digital I/O pins for the RGB LED and keying
relay are configured and turned off, the timer reset, and finally the green LED is
turned on to indicate that the keyer is ready.

msg_length =(sizeof(beacon call))-1; //Calculate size of message array

pinMode(key_pin, OUTPUT); II set PTT/Key pin to output

pinMode(red, OUTPUT); //Set up the LED pins for output

pinMode(green, OUTPUT) ;

pinMode(blue, OUTPUT);

digitalWrite(key_pin,LOW); II Turn off the PTT/Key relay

ledOff(); II Turn off the LED

delay(5000); II Wait 5 seconds

TimerReset(); II Reset the Timer to zero

ledGreen(); //Turn on the Green LED to indicate Beacon/Keyer ready

II End Setup Loop

In the main loop () , the sketch checks to see if the interval has expired,
or if this is the first pass through the loop since the Arduino was reset. The
sketch then determines if it is in Beacon mode or Foxhunt mode, turns on the
appropriate color LED, turns on the keying relay to use as PTT if in Foxhunt
mode, and sends the message. When in Beacon mode, the keying relay is
used as a CW key and sends the CW directly. If the keyer is in Foxhunt mode,
the sketch will add a space to the CW message and then will repeat the CW
message for the duration of the repeat interval.

II Send if the Timer has expired or if this is the first time through

if (Timer() > interval I first pass)

first_pass false; // Set the first pass flag to off

if (mode== 0) II Set the Key mode and LED for Beacon or Foxhunt

II Set Beacon Mode

Morse(key_pin, key speed , 0); II Set up to key the Relay

ledBlue(); // Turn on Blue LED to indicate Beacon Message Transmitting

else {

II Set Foxhunt Mode

Morse(beep_pin, key_speed , 1); II Set up to send modulated CW

ledRed(); //Turn on Red LED to indicate Foxhunt Message Transmitting

digitalWrite(key_pin, HIGH) ; //Key the PTT

II If in Foxhunt mode, repeat the message until repeat time has expired
end time Timer() +repeat;

II Check to make sure repeat timer has not expired (Foxhunt Mode)

8-6 Chapter 8

while(Timer() < end_time)

II Send message in the beacon call array one character at a time

for (int x = 0; x < msg_length; x++)

c =beacon call[x]; II Get the next letter to send

morse.send(c); II Send it in CW

if (mode== 1) II Send a space if in Foxhunt mode to separate messages

morse.send(char(32));

else {

end time = Timer()-1;

After the message is sent, the timer is reset, and the keyer will tum the green
LED on again to indicate that it is ready for the next message interval.

When the sketch and prototype were completed, I created the schematic
(Figure 8.4) to use as a guide to move the electronics to an Arduino protoshield
and the finished project was mounted into a Solarbotics Arduino project
enclosure, as shown in Figure 8.5. This enclosure is small enough to be
mounted to the back of a handheld radio to be a self-contained foxhunt keyer.

Figure 8.4 - CW Beacon and Foxhunt Keyer schematic diagram.

BT1 - 9 V battery. R1 - 1 kn potentiometer.
01, 02 - 1 N4001 diode or equiv. R2, R3, R4, RS - 470 Q, Ve W resistor.
DS1 - Tri-color red, green, blue LED. U1 - Arduino Uno.
K1 - SPST or SPOT 5 V reed relay. Solarbotics Arduino project enclosure
Q1 - 2N2222A NPN transistor or equiv.

CW Beacon and Foxhunt Keyer 8-7

8-8 Chapter 8

Figure 8.5 - Inside view of the CW Beacon and Foxhunt Keyer.

Enhancement Ideas
There are a number of enhancements you can add to this project. Originally,

as part of the foxhunt keyer, I had planned to add a pushbutton that could be
pressed to indicate that the transmitter had been found and the beacon message
would be changed to a different message. Also, you can use an Arduino Nano
instead of the Uno and shrink the project down to a much smaller size. You
could also use a small OLED display to scroll the actual beacon message as
it is being sent and to indicate when the "found" button was pressed. I would
also recommend using a reed relay instead of a small signal relay to make the
beacon keyer quieter.

The last enhancement I would do is probably the main reason they don't
let me be the fox in foxhunts anymore. Now, since the Arduino is pretty good
at robotics too, mount the handheld and foxhunt keyer on top of an Arduino
quadruped robot and have it move 50 feet in random directions in between
transmissions, install proximity sensors to avoid obstacles, and have motion
detectors to sense when someone is nearby and have it move away from them or
hunker down and go silent. Now that's a real foxhunt.

References
Arduino - www.arduino.cc
RadioShack - www.radioshack.com
Solarbotics - www.solarbotics.com

CHAPTER 9 .

Fan Speed Controller

l

The finished Fan Speed Controller

While fans may be a necessity with radios and other devices that generate
heat, your typical fan has two speeds, on or off. Noisy fans can be distracting,
especially if you don't need them running at full speed all the time. You could
use a variable speed controller and control the speed of the fan, but what
happens when things get too hot and you forget to tum up the fan speed?

A common method used in basic Arduino projects to control the brightness
of an LED has been to use a digital 1/0 pin with pulse width modulation
(PWM) to control the brightness by varying the duty cycle of the power to the
LED. Using the same concept, we can use the Arduino to control the speed of
a fan. If we add in a simple temperature sensor, we can vary the speed of the
fan according to the temperature and also sound an alarm if things get too hot.
This would have come in real handy two Field Days ago, when they turned me

Fan Speed Controller 9-1

loose on 20 meters right at the same time the sun was hitting the back of the rig.
It wasn't too long before the rig started to shut down from overheating and we
had to set up a pair of room fans and a shade to cool the heat sink on the back of
the rig to survive until the sun went down. It sure would have been nice to have
a fan speed control with a heat alarm then. I'm quite sure the rig would have
appreciated it. Fortunately the radio survived the ordeal, and this project is a
perfect way to avoid the situation altogether the next time around.

Fan Speed Controller Block Diagram
Piezo

Temperature
Sensor

ARRL 1097

RGB LED Buzzer

Arduino Uno

Figure9.2-
Maxim Inte-

grated DS18820
temperature
sensor. (The
device in the

photo was made
by Dallas Semi
conductor, now
a part of Maxim

Integrated.)

Figure 9.1 - Fan Speed Controller block diagram.

9-2 Chapter 9

Starting out with our block diagram (Figure 9.1), you can see that we'll
need a temperature sensor, a Piezo buzzer, an LED, and some method to drive
the fan itself. Since the Arduino can only supply 40 mA of current per 1/0 pin,
we will need to use a transistor between the Arduino digital 1/0 pin and the de
fan. An RGB LED (red-green-blue) was chosen to allow the controller to show
the current fan mode and temperature range.

I feel that it is always best to prototype your circuit before writing your
sketch. As you build and test the electronics, you may find something that you
overlooked in your design. If you had started out with your sketch instead of
the circuit, you could very well end up having to totally rewrite it if your design
doesn't work as intended. In the case of the Fan Speed Controller, the de fan
wouldn't start at very slow speeds due to the PWM square waves being applied
to it. A capacitor was added to smooth out the square wave a bit, and now the
fan is able to start and run quietly at much lower speeds. A simple fix, but one
that might have caused me fits had I not tested the design before writing the
actual sketch. As I am building my circuits and starting out with the sketch, I
often write smaller pieces of sketches to test out each individual function of the
electronics to verify that everything works as intended. This way, if I do have
problems while creating the final sketch, I know the problem is most likely in
the sketch itself since the circuit functionality has already been tested with a
simpler sketch. Often, I am able to cut and paste pieces of code from my testing

Start

Include Libraries
Define Variables

Define Pin Assignments for
RGB LED, Buzzer,

Temperature Sensor and Fan
Control

• Setup

Setup Digital 1/0 Pins
Turn Off All Outputs
Turn RGB LED Off

Loop

Read Temperature Sensor

No

No

Yes

ARRL 1098

No Turn Fan Output Off

Turn LED Off

Drive Fan Output
with PWM

Proportional to
Temperature

Turn LED Blue

Drive Fan Output
At Full Speed

Turn LED Green

Sound Alarm

Turn LED Red

Figure 9.3 - Fan Speed Controller flowchart.

sketches into the final sketch, so I really
don't lose much time in the development
process.

Before we get into the actual circuit
used in the fan speed controller, let's
take a look at the Maxim DS 18B20
temperature sensor (Figure 9.2). The
DS18B20 is a single-component digital
thermometer with a programmable
resolution of either 9 or 12 bits. It has
the capability for an alarm function with
nonvolatile user-programmable upper
and lower trigger points. Since the alarm
points are non-volatile, you can set them
once and they will be retained even when
the sensor loses power. The DS18B20 is
accurate to ±0.5 °C over the range of
- 10 °C to +85 °C (14 °F to 185 °F).

The DS18B20 communicates with the
Arduino using the Maxim 1-Wire interface
and can be powered parasitically, allowing
you to use just two wires to connect it to
your Arduino. In parasitic power mode,
the DS 18B20 uses the signals on the data
line to charge a small internal capacitor
to provide the power needed to operate
the sensor itself. Each DS l 8B20 has a
unique 64-bit serial number embedded in
the chip, allowing you to have multiple
DS18B20s on a single interface. The
1-Wire interface operates reliably at a
distance of over 100 meters, allowing you
to read multiple temperature sensors over
a wide area with just a single digital 1/0
pin on your Arduino.

For the fan speed controller, the
plan was for the Arduino to read the
temperature sensor and set the fan speed
according to the temperature that was
read. The fan controller would have four
basic modes of operation as shown in the
flowchart for the project (Figure 9.3).
These modes would be off, PWM fan
speed proportional to the temperature, full
speed, and alarm. For test purposes,
80 °F was chosen as my lower
temperature limit, 100 °F as the upper
temperature limit and the alarm would

Fan Speed Controller 9-3

SP1

Piezo Spkr
LED 1

RGB LED Fan Speed Controller
U2

DS18B20 ,)

C1
100µF

35V

Q1
TIP31

t:::::::::========:::::::>-fi .. c::::=========~

J2

Fan Out M1

12V DC Fan

ARRL1099 D1 1N4001

Figure 9.4 - Fan Speed Controller Fritzing diagram.

9-4 Chapter 9

sound when the temperature reached 120 °F. At temperatures below 80 °F, the
fan and LED would be off. When temperatures get above 80 °F, the fan runs at
a slow speed and gradually increases in speed as the temperature rises. In this
mode, the LED glows blue. When the temperature reaches 100°F, the pulse
width modulation is discontinued and the fan runs at full speed. In this mode,
the LED glows green. Finally, when the temperature reaches 120 °F, the LED
glows red and the alarm buzzer sounds until the temperature drops below
120 °F. Note that there is no special significance to the temperatures chosen
for this sketch. These values were chosen simply for testing purposes. You
should set your temperature and alarm limits to suit your cooling needs.

Figure 9.4 shows the Fritzing diagram for the fan controller prototype. I
chose a 12 V de fan since that is the most commonly available de fan, easily
scavenged from old computer power supplies, and are available in a variety of
sizes and speeds. This circuit can drive a fan up to 40 V de. Higher voltage de
fans can be used simply by replacing the TIP31 transistor with a higher voltage
transistor. If you do use a voltage higher than 20 V, be sure to provide an
alternate method of powering the Arduino, since this design taps off of the
12 V fan power supply to power the Arduino. In this design, I chose to power
the DS18B20 temperature sensor in the standard way, using the recommended
4.7 k.Q pull-up resistor between the power and data lines of the sensor.

The Sketch
The actual sketch for this project is a relatively simple one, demonstrating

the power of pre-written libraries and functions . In the top of the sketch, we
include the One Wire library found in the Arduino Playground (playground.
arduino.cc) and define the digital I/O pins and temperature limits used by our
circuit and the OneWire library. The complete Fan Speed Controller sketch and
the OneWire library can be found in Appendix A or downloaded from www.
w5obm.us/ Arduino.

#include <OneWire.h> II I nclude the OneWire Library

#define temp_ sensor 10 // Te mpe ra ture Sensor attached to Pin 10

#define red 7 // Red LED o n p in 7

#define blue 8 // Blue LED o n pin 8

#define green 9 II Green LED on p i n 9

#define fan 6 / / Fan drive on pin 6

#define alarm 5 II a l a rm bu z z e r on p in 5

#define low_temp 80 / / tempera t u r e t o sta r t fan

#define high_ temp 10 0 // temper ature to turn fan on full

#define alarm_ temp 120 // a la rm t emperature

int DS18S20 Pin = t e mp_se nsor ; //DS18S20 Signal pin on temp senso r p in

//Temperature chip I /O

OneWire ds(DS18S20 Pin); //on temp sensor pin

In the setup () loop, we set the pin modes for the digital I/O pins. If you
organize your Arduino digital II 0 into groups of inputs and groups of outputs,
you can simplify the setup process by using a for () loop to set the pin modes
and assign their starting values.

for (int x = 5; x <=9; x++) // Set the Pi n Modes for Pins 5 th r o ugh 9

pinMode(x , OUTPUT);

if (x <= 6) // Fo r pins 5 and 6 sta r t Low , 7 - 9 start High (LED o ff)

digitalWrite(x , LOW);

else {

dig i ta l Wri te(x, HIGH);

In the main loop (),we use the Ge t Temp () function to read the current
temperature from the DS18B20. This function, found in the OneWire library
example sketches, does all the dirty work to read the temperature sensor and
returns the current temperature in Celsius. Since I'm not all that great at conver
ting Celsius to Fahrenheit in my head, I added the conversion formula to the
Get Temp () function so that it would return the temperature in Fahrenheit instead.

Fan Speed Controller 9-5

r- - - - -SCL

J- - - - -SDA

I AREF

I I GND

RESERVED I I D13

IOREF I I D12

RESET I D11

3V I D10

D1 5V I I U1 D9

1N4001 GND2 I I Arduino D8

GND1 I I Uno R3
VIN I D7

I D6

AO I I D5

A1 I I D4

A2 I I D3

A3 I D2

A4/SDA- J D1

A5/SCL- - J DO

ARRL 1100

Figure 9.5 - Fan Speed Controller schematic diagram

C1 - 100 µF, 35 V electrolytic capacitor.
01 - 1 N4001 diode

R1
4.7 kO

+5V

3

2 U2
.----.....,...u,,.-2_"""'1.,..,.w,..-f DS18B20

R1, RS - 4. 7 kn, Va W resistor.
R2-R4 - 470 n, Va W resistor.
U1 - Arduino Uno.

+12 V de
In

To
12Vdc

Fan

DS1 - RGB common anode LED.
LS1 - Piezo buzzer.
Q1 - TIP31 NPN power transistor.

U2- Maxim Integrated DS18820 temperature
sensor.

The rest of the main l o op () uses a series of if () statements to set the
fan operating mode and LED settings for the current temperature. I found in
my testing on the breadboard that a starting PWM setting of 30 was the lowest
setting that could reliably be used to start my fan at its slowest speed. Any
setting slower than that and the fan would not start reliably. A map () statement
is used to map the PWM setting from 30 (minimum) to 255 (fully on) based on
the temperature range set by the upper and lower temperature settings.

if (temperature< low_temp) II Everything off if below low_temp

ledOff();

digitalWrite(fan, LOW);

digitalWrite(alarm, LOW);

II Run the Fan as a proportion of the temp

if (temperature >= low_temp && temperature <= high temp)

II Starting PWM should be 30 or above to prevent fan stall

analogWrite(fan, map(temperature,low_temp, high temp,30,255));

ledBlue(); II Indicate Fan Running - Temp within range

9-6 Chapter 9

II Turn the Fan on full speed

if (temperature > high_temp && temperature < alarm_temp)

analogWrite(fan,255); II Set the Fan to Max Speed

ledGreen(); II Indicate Fan Running - Max Speed

II Sound the alarm

if (temperature>= alarm_temp) II Overtemp Alarm

ledRed(); II Indicate Temp over Limit

digitalWrite(alarm,HIGH); II Sound the Alarm

else {

digitalWrite(alarm, LOW);

When the breadboard prototype and sketch were debugged and complete,
the schematic diagram in Figure 9.5 was used to solder the project onto a
prototyping shield, and the project was mounted inside a Solarbotics project
enclosure for final testing. Figure 9.6 shows the finished project.

' l

Figure 9.6 - Inside view of the Fan Speed Controller.

Enhancement Ideas
The design of the Fan Speed Controller lends itself very nicely to being

mounted in a much smaller package and controlled by an Arduino Nano or
similar small Arduino. Since the controller is powered by the fan's power, you
can mount everything on a small perfboard attached directly to the fan. Also, as

Fan Speed Controller 9-7

9-8 Chapter 9

my ears would attest during testing, having an alarm mute button wouldn't be a
bad idea either.

Finally, this would be an ideal project to learn about interrupts and the
internal alarm settings on the DS18B20. Rather than have the sketch constantly
read the temperature, you could use interrupts for your low and high PWM
temperature points and have the interrupt handler manage the fan speed. One
thing is for sure, I won't be cooking any more radios at Field Day as long as I
have this little thing around.

References
Arduino Playground - playground.arduino.cc
Maxim Integrated - www.maximintegrated.com
Solarbotics - www.solarbotics.com

CHAPTER10

Digital Compass

The finished Digital Compass mounted in a Sparkfun
pcDuino/Arduino enclosure.

You've got all your gear at that ideal remote site you've been planning to
operate from for years. The gang has the portable tower all set up and ready to
go. Just one minor detail, which way is north? How can you properly align your
antennas if you don't know which way to orient it? Yeah, okay, you've probably
got a compass cell phone app, handheld GPS or even a real compass, but work
with me here. Wouldn't it be cool to just whip out your Arduino-powered
Digital Compass to show the way?

The Honeywell HMC5883L Digital Compass (Figure 10.1) is an PC-based
triple-axis magnetometer combined with a 12-bit analog converter used to read

Digital Compass 10-1

magnetic field strength. The HMC5883L measures the magnetic field on three
separate magneto-resistive sensors, with eight programmable gain settings and
a resolution of 1 to 2 degrees. The HMC5883L is available as a module from
SparkFun Electronics (www.sparkfun.com), DFRobot (www.dfrobot.com), as
well as other online Arduino parts suppliers. The HMC5883L is a 3.3 V chip,
so care must be taken to provide the proper voltage and signal levels to the
module. Some of the more recent modules include a 5-to-3.3 V converter and
the recommended PC pull-up resistors on the module itself. This is the version
of the module used in this project.

As the block diagram in Figure 10.2 shows, once again the libraries and
example sketches make this a quick and easy project to construct. A new feature
in this project as compared to the previous projects is that there are now two

10-2 Chapter 1 O

Figure 10.1 - The HMC5883L 3-Axis
digital compass module.

ARRlllOl

I
16x2 12C LCD

J l

Compass ~ Arduino Uno
Module ...

Figure 10.2 - Digital Compass block diagram

I

I

Start

Include Libraries
Define Variables
Setup 12C LCD

Setup Digital Compass Module

, '
Setup

Initialize 12C LCD
Initialize Digital Compass

Loop

Read Compass
Convert Reading to Degrees

Display Heading on LCD

ARRL 1102

Figure 10.3 - Digital Compass flowchart

devices sharing the FC bus, the HMC5883L compass module and the LCD
module, demonstrating the versatility of the FC bus. With both of the external
components of this project sharing the FC bus, only 8 wires (including power
and ground) are required to build the project.

The HMC5883L and LiquidCry stal I2C libraries also simplify the
flowchart (Figure 10.3). After the initial setup and initializing the modules, it is
simply a matter of using the library functions and very little in the way of actual
coding is needed. In fact, the logic used to determine the 16 compass points (N,
NNE, NE, and so on) and display the compass bearing on the LCD takes up
more code than the rest of the entire sketch.

As mentioned above, only eight wires, plus the battery connections, are all
that is needed to construct this project. Figure 10.4 shows the Fritzing diagram
of the completed project as it was built on the breadboard to begin coding. You
will notice that this project appears to be missing the recommended 4. 7 kn
pull-up resistors on the FC bus. The HMC5883L module has the FC bus pull
up resistors on the module itself, so there is no need for the usual external pull
up resistors.

Digital Compass 10-3

ARRL 1103 Digital Compass

lr:; 1 N4001 U2 Compass
01 HMC5883L

' ,j

lX J. SPST Switch
.. SW1

Figure 10.4 - Digital Compass Fritzing diagram

Creating the Sketch
The complete Digital Compass sketch and libraries can be found in

Appendix A or downloaded from www.wSobm.us/Arduino. Using the
HMC5883L library example code as a guide, the only real items of note in
the initialization and setup () loop of the Digital Compass sketch pertain
to setting the scale (gain) and mode of the HMC5883L chip. The unit used to
measure the strength of a magnetic field is known as the Gauss, named after the
German mathematician and physicist Carl Friedrich Gauss. For this sketch the
range of the compass module is set to ± 1. 3 Gauss (G). For reference, the Earth's
magnetic field measures between 0.31 and 0.58 Gauss at the surface.

II Set the scale of t he compass to +I - l . 3Ga .

e rror= compas s .SetScale (l.3);

II Set the mea su r ement mode to Continuous

error= compas s. Se t Mea s uremen tMode (Measurement Con tinuous);

The main loop () reads the scaled Gauss values from Digital Compass
module and stores the results in the scaled. XAxis, scaled. YAxis, and
scaled. ZAxis function variables. Since Arduino functions can only return
one value at a time, the MagnetometerScaled Data type is defined in
the library to pass the three Axis values back to the main loop.

10-4 Chapter 10

II Retrieve the scaled values (scaled to the configured compass scale) .

MagnetometerScaled scaled= compass.ReadScaledAxis();

float heading

The actual compass bearing is calculated using the arctangent function,
at an 2. This function is used to convert two numbers to their polar coordinates,
which will give us the result in degrees. These results are stored in the
headi ng variable. Fortunately for us, the a tan2 function handles this for us,
so we don't have to remember all that trigonometry we forgot years ago.

atan2(scaled.YAxis, scaled.XAxis);

Finally, once we have calculated our compass bearing, we have to add in the
magnetic declination that is specific to our location. Magnetic declination, also
known as magnetic variation, is the angular different between the geographic
North Pole, also known as True North, and the magnetic North Pole. This
deviation value needs to be applied to the magnetic compass heading to
calculate True North. You can find the magnetic declination value for your
location at www.magnetic-declination.com.

float declinationAngle = 0.0169296937; II Declination for Southaven, MS

heading += declinationAngle;

Next, we correct the heading if it is a negative value or if the value goes
beyond 360°.

if(heading < 0) II Correct for when signs are reversed.

{

heading += 2*PI;

if(heading > 2*PI) II Check for wrap due to addition of declination.

{

heading - 2*PI;

Finally, we convert the heading value from radians to degrees and display
the value on the LCD.

I I Convert radians to degrees

float headingDegrees = heading * lBOIM PI; for readability.

II Output the data to the LCD display

Output(raw, scaled, heading, headingDegrees);

The Output () function displays the heading and direction on the LCD.
The bearing is broken down into 16 directions, (N, NE, ENE, etc.) and the
display is updated once per second.

Digital Compass 10-5

II Output the data to the LCD

void Output(MagnetometerRa w raw, Magnetome terScaled s caled, float heading, float

headingDegrees)

led.clear();

led.print(" " "); II Pr i nt an up ar r ow to indi c ate compass p o inter

l cd.print(headingDegrees,1); II Di sp l ay the He ading in degrees

led.print(" Deg");

lcd.setCursor(l 5 ,0);

l ed.print(" " ");

II Calculate Direc ti on

Direction = " ";
lcd.setCurs o r(6,l);

if (headingDegrees >= 3 4 8 .75 I h ead ingDe grees <11. 2 5) II Direction North

Directi on = " N";

if (headingDegrees >= 11. 25 && h eadingDegre e s <33 . 7 5) II Direction

North East

North

Directi on "NNE";

Construction Notes
Once the Digital Compass was working on the breadboard, the finished

schematic (Figure 10.5) was created and used to solder the finished project
onto a protoshield (Figure 10.6). When you look at the HCM5883L module,
you will see a small circular symbol with X and Y arrows on the board. These
arrows represent the orientation of the magnetic sensors in the HCM5883L
chip. The X arrow on the module should be aligned to point to your desired
heading.

The completed project was mounted in a clear enclosure for pcDuino/
Arduino from SparkFun (Part number: PRT-11797) along with the Extension
Plate (Part number: PRT-11798). Figure 10. 7 shows the finished project.

Enhancement Ideas
One thing I discovered while constructing this project is that the

HCM5883L Digital Compass is not tilt-compensated. This means that to get
accurate compass readings, the compass module must be held flat, otherwise
the readings may not be accurate. This can be corrected with the use of an
accelerometer module and calculations can be added to compensate for
compass tilt. There are several libraries and forum topics on the Arduino
Playground (playground.arduino.cc) that add this functionality to the Digital
Compass.

The simplicity of the Digital Compass circuitry lends itself easily to an
Arduino Mini makeover. Using an Arduino Mini and an organic LED (OLED)

10-6 Chapter 1 O

ARRL1104

U3 16x2 LCD

I I I I I I I I I I I I I I I I I I

0
w
>

U1
Arduino Uno R3

0:: U.. ._ N ~
~ w ~ 0 0
w er: w > > z z ~
er: g er: C")"' (!) (!) >

J <!'. () 0
u 0 (_) z (/) (/) > (!)

......._. __ __.Voe
.___ __ _. GND

-1---1-----1 SCL
-1-------l SDA U2

HMC5883L

- DRDY

- 3V3

Figure 10.5 - Digital Compass
schematic diagram.
D1 - 1 N4001 Diode or

equivalent.

I I I I I I I I I I I I._________.

51 - SPST toggle switch.
U1 - Arduino Uno.
U2 - HMC5883L 3-Axis digital

compass module (5 V
version). BT1 D1 S1

r<~ 11h?>-+t--<Y'0-rh 9V 1N4001 Power

U3 - 16 character x 2 line 12C
LCD display.

Figure 10.6 - The Digital Compass finished protoshield.

Digital Compass 10-7

Figure 10.7 - Inside view of the finished Digital Compass.

display, you could miniaturize the digital compass to fit in a much smaller
enclosure, possibly along the lines of the Altoids mint tin or even smaller.

References

10-8 Chapter 10

Arduino Playground - playground.arduino.cc
bildr.blog - bildr.org/2012/02/hmc58831-arduino/
DFRobot - www.dfrobot.com
Honeywell - www.honeywell.com
Magnetic-Declination - magnetic-declination.com
SparkFun Electronics - www.sparkfun.com

CHAPTER 11

Weather Station

The finished Weather Station mounted in a Solarbotics
Arduino Mega S.A.F.E.

As I sit here putting this all together, my weather radio is sounding all sorts
of weather alerts. Almost constant severe thunderstorm, tornado watch, tornado
warnings, and flash flood warnings have been going off for most of the day and
the local ham emergency nets are all active. Perfect timing for a Weather Station
project, wouldn't you say? Hams and weather seem to go hand in hand, from
weather emergency groups and nets to plain old weather watching.

The Arduino has a wide array of sensors that can be used to monitor many
different weather and atmospheric conditions. When I was growing up, our
family had one of the analog wall-mounted weather stations that displayed the
temperature, relative humidity, and barometric pressure on analog dials. For this
project, I decided to revisit my childhood memories and give that wonderful old
weather station an Arduino makeover.

Weather Station 11-1

Sensors
Moving forward in our Arduino adventures, this

project uses a blend of two Arduino bus technologies. The
MaxDetect RHT03 temperature and relative humidity sensor
(Figure 11.1) uses the MaxDetect 1-Wire bus (not to be
confused with the Maxim 1-Wire bus) while the Bosch
BMP085 barometric pressure sensor uses the FC bus to
communicate with the Arduino. This project also introduces
the Nokia 5110 graphic LCD display module, which is
rapidly becoming the display of choice for many Arduino
projects. All three devices are well supported with Arduino
libraries and example code.

The MaxDetect RHT03, also available as the Aosong
DHT22 and Aosong AM2302, is a pre-calibrated tempera
ture-compensated relative humidity and temperature sensor.
The relative humidity portion of the RHT03 has a resolution
of 0.1 % humidity and an accuracy of ±2% over a temperature
range of-40 to 80 °C (-40 to 176 °F), a much better lower
range than that of the Maxim DS18B20 temperature sensor
used in the Fan Speed Controller. The temperature sensor
in the RHT03 has a resolution of O. I °C with an accuracy
of ±0.5 °C over the same operating range. The RHT03
communicates with the Arduino using the MaxDetect
I-Wire interface and can be placed up to I 00 meters away
from the Arduino for remote measurements. Figure 11.1 - The MaxDetect RHT03

relative humidity and temperature
module.

The MaxDetect 1-Wire bus uses a different technology
and is not compatible with the Maxim I-Wire bus used by

the Maxim DS18B20 and other Maxim I -Wire devices. The MaxDetect I-Wire
interface is not really a bus, as only one sensor can be connected per Arduino
digital 1/0 pin whereas the Maxim 1-Wire bus allows multiple Maxim devices
to be connected to the same Arduino digital 1/0 pin. As long as you remember

Pascals, Millibars and Inches of Mercury
When I began working with the Weather Station project, I quickly discovered that the Bosch

BMP085 barometric pressure sensor outputs its data in hectoPascals. Hecto what? Maybe I've led a
sheltered life, but up to this point I have always known barometric pressure to be in millibars or inches
of mercury. Some quick research on the web provided the formulas and information needed to convert
these Pascal things to numbers I was used to.

A Pascal (Pa) is equal to 100 millibars, or, using the hectoPascals (hPa) output from the BMP085, 1
hPa = 1 millibar of pressure. One inch of mercury (inHg) is equal to 3386.489 Pascals (33864.89 hPa)
at 0 °C. For reference, one standard atmosphere at sea level is defined as 29.92 inches of mercury, or
1013.25 hPa.

Since the standard pressure at sea-level can be used as a reference point, we can apply the formula
in the BMP085 datasheet to our barometric pressure sensor data and calculate our altitude above sea
level. So, not only can you use your barometric sensor to measure air pressure, with just a twist you can
turn it into an altimeter as well. More information may be found at www.arduino.cc and www.bosch.
com.

11-2 Chapter 11

Figure 11.2 - The Bosch BMPOBS
barometric pressure and temperature
module.

Curret1t Wx

Figure 11.3 - Weather Station output
displayed on the Nokia 511 O LCD
display.

ARRL 1105

I
Nokia 5110

LCD Display

j l

RHT03
Temperature/ -

Humidity ~

Sensor

Arduino Uno
BMP085

Barometric
Pressure ~

Sensor

I

Figure 11.4 - Weather Station block diagram.

l

not to mix and match your MaxDetect devices and
Maxim devices on the same digital 1/0 pin, you'll
be fine.

The Bosch BMP085 barometric pressure sensor
(Figure 11.2) communicates with the Arduino
using the PC bus. The BMP085 has resolution of
0.01 hPa (hectoPascals) with a typical accuracy
of ± 1 hPa over an operating temperature range of
-40 to 85 °C. (See the sidebar, "Pascals, Millibars,
Inches of Mercury.") As with the RHT03, the
BMP085 also has an embedded temperature sensor
that has a resolution of 0.1 °C with an accuracy
of ± 1 °C over the same operating range as the
barometric pressure sensor portion of the module.
The BMP085 sensor chip requires 3.3 V to operate,
but many of the more recent modules have onboard
5 V regulators . This project uses the 5 V version of
the BMP085 module.

The Nokia 5110 graphic LCD (Figure 11.3)
was originally intended for use as a cell phone
display. Using the PCD8544 display controller, the
Nokia 5110 has an 84 x 48 pixel display, which
allows up to six lines of 15 characters of text.
The Nokia 5110 is a graphic LCD, meaning you
can display images, charts, and graphs as well as
text. It uses four small LEDs for backlighting and
is currently available with either a white or blue
backlight. The datasheet recommends powering the
Nokia with 3.3 V; however it can be used at up to
5 V. The Nokia 5110 connects to the Arduino using
five digital 1/0 pins, and the contrast of the display
can be adjusted via software.

Starting out with the usual block diagram
(Figure 11.4), I wanted the Arduino to read
the RHT03 and BMP085 sensors and display
the current temperature, relative humidity, and
barometric pressure on the Nokia 5110 LCD. Since
both sensors have internal calibration data that has
to be applied to the raw sensor data, the Arduino
would also be used to apply this calibration data
to the raw sensor readings to calculate the correct
results .

Using the block diagram as a guide, the next
order of business was to wire the project up on
the breadboard. Using the Fritzing diagram I
created for this project (Figure 11.5), I wired up
the project on the breadboard. You will notice that

Weather Station 11-3

BT1
9V

U4
Nokia 5110 LCD Module

0

Figure 11.5 - Weather Station Fritzing diagram.

11-4 Chapter 11

1N4001

0

0

4700
R1

1k0
R2

U3
BMP085

ARRL1106

11111
• • • 8. I •
11111

U2
RHT03

Start

Include Libraries
Define Variables
Setup Nokia LCD

Setup Temperature and Relative
Humidity Module

Setup Barometric Pressure Module

Setup

Initialize Nokia LCD
Initialize Temperature and Relative

Humidity Module
Initialize Barometric Pressure Module

Loop

Read Temperature and Relative
Humidity Module

Read Barometric Pressure Module
Display Temperature, Relative

Humidity and Barometric Pressure on
LCD

ARRL1107

Figure 11.6 - Weather Station
flowchart.

there are no pull-up resistors on the FC bus for the BMP085.
The BMP085 module used in this project is the 5 V version
and comes with the FC bus pull-up resistors mounted on the
module itself. You will also note that the datasheet calls for a
1 kO pull-up resistor on the RHT03 data line connected to the
Arduino digital 1/0 pin. Finally, a 470 n resistor is used on the
backlight pin of the Nokia 5110 LCD.

Planning out the sketch flowchart (Figure 11.6), I found
a number of libraries available for the DHT03 and the Nokia
5110 LCD. The libraries I chose to use were the DHTLib
library from the Arduino Playground (playground.arduino.
cc) and the LCD5110_Basic library by Henning Karlsen
(www.henningkarlsen.com/electronics/) although any of
the other libraries would do just as well. At the time this
project was created, I could not locate a suitable library for
the BMP085 sensor, so the code for the BMP085 does not use
a library and the SparkFun example sketches were used as a
guideline instead. Most of the complex operations are handled
by the libraries or by the functions in the example sketches,
which greatly simplifies the use of these sensors in your
projects.

Unlike the previous projects, there is a lot of initialization
needed to get the sensors and display ready for operation.
In addition to the standard library #include statements,
the addresses and Arduino 1/0 pins must be defined for use
by their associated libraries. Because we are using PC for
the BMP085, we also must include the Arduino internal PC
Wire. h library. The complete sketch and required libraries
for this project can be found in Appendix A and at www.
wSobm.us/ Arduino.

#include <Wi re.h> II Use the internal I2C Library

#include <dht . h> II Use the DHT Relative Humidity Library

#include <LCD5110 Basic . h> II Use the Nokia 5110 LCD Library

#define BMP085 ADDRESS Ox77 II I2C address of BMP085

dht DHT; II Define the DHT object

#define DHT22 PIN 2 II Set the IIO pin used for the RHT03 Sensor

II The Nokia LCD module is

II CLK - Pin 12

II DIN - Pin 11

II DC - Pin 10

II RST - Pin 8

II CE - Pin 9

LCD5110 glcd(12 ,11, 10 , 8,9);

extern uint8 t SmallFont[] ;

connected to the following pins.

II Set the IIO pins used by the Nokia display

II Define the Small Font for the Nokia display

Weather Station 11-5

Next, the variables for the BMP085 calibration values need to be defined as
well as the variables for the BMP085 and RHT03 raw sensor data values.

II Calibration values for the BMP085

int acl, ac2, ac3, bl, b2, mb, me , md;

unsigned int ac4, ac5, ac6;

II b5 is calculated in bmp085GetTemperature(), this variable is also used in

II bmp085GetPressure() so Temperature() must be called before Pressure()

long b5;

int chk ; II Status Check variable for RHT03

II These variables contain the calculated results

float centigrade, fahrenheit, inHg;

In the setup () loop, the FC bus and the Nokia 5110 LCD are started. A
startup message is briefly displayed on the LCD display before continuing on
with the rest of the setup () loop.

Wire.begin(); II Start the I2C Interface

glcd.InitLCD(65); II Ini tia lize the Nokia 5110 Display, set Contrast to 65

glcd.setFont(SmallFont); II Set the Font to Small Font

glcd.print("KW5GP", CENTER, 0); II Display the Startup screen

glcd.print("Weather", CENTER, 8);

glcd.print("Station", CENTER,16);

glcd.print("Initializing", CENTER,32);

delay(3000);

glcd.clrScr(); II Clear the LCD screen

The last operation performed by the setup () loop is to run the BMP085
calibration function:

II Run the BMP085 Calibration Function

bmp085Calibration();

In the main loop () , the LCD is set up with a display template and the
RHT03 is read. In case of a read error, the error is displayed on the LCD and
the sensor data is ignored. This portion of the sketch introduces the Arduino
swi tch ... case () statement. The swi tch ... case () statement allows the
selection of different blocks of code to be executed based on the value of a
variable, in this case, the chk variable is used to determine which branch of the
code is executed. The end of each branch of the code is signified by the break
keyword and program execution continues at the end of the swi tch ... case ()
block of code. If no conditions match within the swi tch ... case () statement,

11-6 Chapter 11

the default block of code is executed.
While both sensors are capable of providing temperature data, for this

sketch, the temperature readings from the RHT03 are used.

glcd . print(" Current Wx ", CENTER, 0);

g l cd . print (" R/H : ", 0 ,1 6);

g l cd.print(" Temp : " , 0 , 24) ;

II Read the RHT03 RH/Temp Sensor

c hk = DHT .read22 (DHT22 PIN); / / Read t h e RHT0 3 RH/Temp Sensor

switch (chk)

case DHTLIB OK :

II Display the RH Data if it 's a vali d r ead

glcd . printNumF (DHT . humidi ty , 1 , 30 , 16);

glcd.print(" % ", 55 , 16);

centigrade = DHT . temperature ;

fahrenheit = (centigrade * 1. 8) + 32 ; II c onvert to Fa hrenheit
glcd . printNumF(fahrenheit , 1 , 30 , 24);

glcd.print ("F" , 55 , 24) ;

break ;

case DHTLIB ERROR CHECKSUM :

glcd . print("CK Error", 25 , 16) ;

break ;

case DHTLIB ERROR TIMEOUT :

g l cd . print(" T/O Error" , 25 , 16);

break ;

default :

glcd.print(" Unk Error" , 25 , 16);

break ;

Next, the barometric pressure data is read from the BMP085. The BMP085
outputs the barometric pressure in Pascals. The sketch converts this into the
more commonly known inches of mercury. One interesting feature of the
BMP085 is that it can also calculate altitude based on the difference between
standard sea-level atmospheric pressure and the barometric pressure read by the
BMP085.

II bmp085GetTemperature () MUST be called first

float temperature= bmp085GetTemperature (bmp 08 5Re adUT());

float pressure= bmp085GetPressure(bmp085Read UP ());

floa t a t m = pressure I 101325 ; // " standard a t mosphe re"

Weather Station 11-7

float altitude= calcAlt itude(pressure); //Uncompensated altitude - in Meters

pressure =pressure I 1000; II Convert to KiloPascals

inHg =pressure * 0.2952998016471232; //Convert KPa to Inches of Mercury

glcd.printNumF(inHg,2,40,40); //Display the Pressure in Inches of Mercury

The real magic for converting the raw barometric pressure data from the
BMP085 happens in the bmp085GetPressure () function. The BMP085
has eleven 16-bit calibration values stored in the BMP085's internal EEPROM
memory. These calibration values are applied using a complex formula to
calculate the actual barometric pressure read by the BMP085. I won't even
attempt to try to understand what this function does other than state that it uses
the formula provided by Bosch in the BMP085 datasheet to convert the raw data
into actual barometric pressure. This is part of the fun of the Arduino. You don't
have to understand how a pre-existing function or library works as long as it
provides you the information you need for a given project.

II This function calculates pressure

II calibration values must be known

II b5 is also required so bmp085GetTemperature() must be called first.

II Value returned will be pressure in units of Pa.

long bmp085GetPressure(unsigned long up)

long xl , x2, x3, b3 , b6, p;

unsigned long b4, b7;

b6 = b5 - 4000;

II Calculate B3

xl (b2 * (b6 * b6)>>12)>>11;

x2 (ac2 * b6)>>11;

x3 xl + x2;

b3 (((((long)ac1)*4 + x3) «0SS) + 2)>>2;

II Calculate B4

xl (ac3 * b6)>>13;

x2 (bl * ((b6 * b6)>>12))>>16;

x3 ((xl + x2) + 2) >>2;

b4 (ac4 * (unsigned long) (x3 + 32768)) >>15;

b7 ((unsigned long) (up - b3) * (50000»0SS));

if (b7 < Ox80000000)

p = (b7«1) /b4;

else

p = (b7/b4) «1 ;

xl (p»8) * (p»8);

xl (xl * 3038)>>16;

x2 (-7357 * p)>>16;

11-8 Chapter 11

p += (xl + x2 + 3791)>>4;

long temp = p;

r e turn temp;

Construction Notes
Once the sketch was completed and the project working as advertised on the

breadboard, the schematic diagram for the project (Figure 11.7) was used to

ARRL1108

U4 Nokia 5110

tn w u ~ ~
er u o o u

1 2 3 4 5

u .:E 0
u Cl z

> ::::; ('.)

R1
470 0

+3.3V

R2
1 kO

+5V

Vee

2 U2
~----+-~OUT RHT03

0
w
>

U1
Arduino Uno R3

eru._t- N~
l7l w l7l 0 0

<(....I
OU
~~ w er w > > z z ~ erQerMIOC'.l<'.l> ~~~~~~

Figure 11.7 -Weather Station schematic diagram.

7

6

2

8

GND
3

U3
BMP085

SDA VDDA
3

SCL VDDD
4

EOC NC
5

XCLR GND

+5V

BT1 - 9 V battery. U2 - MaxDetect RHT03 relative humidity/
01 - 1 N4001 diode. temperature sensor module.
R1 - 470 n, % W resistor. U3 - Bosch BMP085 barometric
R2 - 1 kn % W resistor. pressure/temperature sensor module.
S1 - SPST switch. U4 - Nokia 5110 LCD display module.
U1 - Arduino Uno.

Weather Station 11-9

11-10

build the protoshield. I mounted the finished project in a clear Solarbotics Mega
S.A.F.E. enclosure. I prefer to use the Mega size enclosure as it allows more
room for mounting external components such as a battery, switches, and other
parts. To get a more accurate temperature and humidity reading, the RHT03 was
mounted on the outside of the enclosure.

I have also found the Solarbotics S.A.F.E. enclosures to be ideal for projects
that use the Nokia 5110 display, as the display can actually be mounted using
a header socket onto the protoshield itself. This allows the LCD display to be
clearly seen while keeping it safe inside the enclosure.

Enhancement Ideas
This is one of those projects where it can be difficult to choose what you

want it to be as you have so many atmospheric and weather-related sensor
options available. Since many weather-related items involve a trend over a
period of time, adding a real-time clock calendar and datalogging function and
graphic trends on the graphic LCD would be ideal. You can easily add a rain
gauge and an anemometer for wind speed and have a nearly complete picture of
the current weather. A much simpler enhancement would be to use a digital 1/0
pin to control the brightness of the backlight using PWM. You can keep track
of the barometric pressure and add an up or down arrow next to the barometric
pressure reading to indicate that the pressure is rising or falling. Finally, you
could use a text-to-speech module and have the weather station speak the time,
temperature, and other parameters for you.

This project turned out to be a lot of fun for me and it will come in real
handy in just a few short weeks when the club does our annual exercise in
insanity as we compete in the outdoor category of the annual Society for the
Preservation of Ham Radio (SPAR) Winter Field Day event, where temperature
is part of the contest exchange. Hopefully next year, I'll have the Ethernet side
of this project worked out and we can have the contest software automatically
handle the time and temperature side of things for us.

References

Chapter 11

Adafruit Industries - www.adafruit.com
Aosong Electronics - www.aosong.com
Arduino Playground - playground.arduino.cc
bildr.blog - www.bildr.org/2011/06/bmp085-arduino/
Bosch - www.bosch-sensortec.com
Henning Karlsen - www.henningkarlsen.com/electronics/
MaxDetect - www.humiditycn.com
Society for the Preservation of Ham Radio - www.spar-hams.org
SparkFun Electronics - www.sparkfun.com

CHAPTER12

RF Probe with
LED Bar Graph

The finished RF Probe (right) and RF sensing unit.

One of the cool things about the Arduino is that it is a tool that can be used
to make other tools . If you're like most hams, you don't often have a need for a
lot of test equipment, and when you do need to test something, you can usually
borrow what you need from a fellow ham. The reason for this is primarily
because some test equipment can be rather expensive, or it's just not worth the
investment for something you'll only use once or twice in a blue moon.

In my case, I don't often need an RF probe, but it can come in handy when
you want to know if that QRP transmitter is working and you don't happen to
have a wattmeter or SWR meter handy or you need to track down some stray
RF in the shack. While researching another project, I came across the "RF
Driven On-Air Indicator" article by Keith Austermiller, KB9STR, which itself
is derived from "The 'No Fibbin' RF Field Strength Meter" by John D. Noakes,
VE7NI. 1•

2 With a few minor tweaks, those projects could be adapted into an RF
probe that would allow an Arduino to drive an LED bar graph display instead of
a meter to indicate the strength of the RF signal.

RF Probe with LED Bar Graph 12-1

Probe
Unit

1 ARRL 109

10-Segment
LED Bar Graph Display

i

Arduino Uno

I

RF Sensing Unit
This is actually a two part project. First, we

need to construct the RF sensing unit and then we
have to connect the sensing unit to the Arduino
and display unit. The RF sensing unit is built in
a separate enclosure, allowing it to be adapted

Figure 12.1 - RF Probe block diagram.

for other projects when not needed as an RF
probe. Figure 12.1 shows the block diagram for
the project. In addition to the RF sensing input,
the Arduino would be used to display the signal
strength on a bar graph display withlO LEDs.
The original design called for using a Maxim
MAX7219 bar graph LED driver chip. After
beginning the actual circuit construction, I felt
that there was no need for the added complexity

J2
Antenna c1

~1µF
01

1 N5711

of an LED driver chip and decided it would be
easier to just have the Arduino drive the bar graph LED directly.

The construction of the RF Probe goes a little bit differently than the
previous projects. Rather than prototype the RF sensing unit on the breadboard
and have to be concerned about the effects of RF on the breadboard wiring, the
RF sensing unit was to be built and mounted in a separate enclosure.

Using the schematic in the "RF Driven On-Air Indicator" article, a few
modifications were made to adapt it for use in this project, as shown in Figure
12.2. Since the only output desired for the RF sensing unit is an analog voltage
representing the signal strength, the output transistors and the relay drivers are
omitted and a 1 kO buffering resistor added between the op amp on the sensing
unit and the Arduino. Also, to improve sensitivity, the 1N34A germanium
diodes called for in the circuit were replaced with 1N5711 Schottky diodes.

02

1 N5711

C2
0.01 µF

R1
10 kO

R2 R3

+SV

~n J1 r ToRFProbe
RF Sense Out

ARRL 1110

Figure 12.2 - RF sensing unit schematic diagram.
C1, C2 - 0.01 µF, 35 V capacitor. R2 - 2.2 kn, 1/.i W resistor.

R3 - 100 kn, 1/.i W resistor.
R4 - 1 kn, 1/.i W resistor.
U1 - LM358P op amp.

01, 02 - 1 N5711 Schottky diode.
J1 - Ye-inch stereo mini jack.
J2 - S0-239 chassis mount coax connector.
R1 - 10 kn potentiometer.

12-2 Chapter 12

I The choice of diodes used in the RF sensing unit is critical
and you will need to use either 1N34A germanium diodes
or preferably 1N5711 Schottky diodes. Whatever diode
you choose to use, do not use a silicon diode such as the
1N4001. A silicon diode has a forward voltage drop of
approximately 0.7 V, while a germanium diode has a
forward voltage drop of 0.3 V, and the Schottky diode has
the lowest forward voltage drop of the bunch at 0.2 V. These
small differences in forward voltage drop can significantly
impact the sensitivity of the RF sensing unit.

The RF sensing unit is built on a standard protoboard
cut to fit inside a Radio Shack (part number 270-1802)
4 x 2 x 1 inch project box. The antenna connector and
output jack connect to the circuit board using pin headers
and DuPont-style female headers allowing easy removal of
the circuit board to correct the inevitable wiring error. The
LM358P op amp is mounted in a socket for those times
when you accidentally feed it 100 W and let the smoke out.
A 10 inch piece of AWG #14 solid wire was soldered to
the center conductor of a PL-259 coax connecter to serve
as the RF pickup for the sensing unit. An S0-239 coax
chassis connector mounted to the project box allows you to
use different antennas for the RF pickup antenna. A stereo
Vs-inch mini jack is used to connect between the RF sensing
unit and the Arduino assembly. Figure 12.3 shows the
finished unit.

Breadboard

Figure 12.3 - The inside of the RF
sensing unit.

The next order of business is to wire up the Arduino half
of the project on your breadboard using the Fritzing diagram
in Figure 12.4. This project introduces two new 1/0
methods for the Arduino. We will be using the Arduino's

built-in analog-to-digital converter to change the analog voltage output from the
RF sensing unit into a value that is converted to a digital representation of the
signal strength, and then output that to a 10 LED bar graph display. For an RF
probe, you don't necessarily need the power of an LCD display, as all you are
really interested in is a relative RF field strength indication - perfectly suited to
the bar graph-style displays. Since the Arduino will be doing all of the work, all
you really need on the protoshield is the 330 n current-limiting resistors for the
bar graph LED display.

Creating the Sketch
The sketch for the RF Probe project is actually rather simple. Using the

flowchart (Figure 12.5), the sketch itself is quite small, showing how well
adapted the Arduino is to the simple 1/0 tasks used in this project. The sketch
requires no libraries and is very straightforward. All the sketch has to do
is read the analog voltage from the RF sensing unit and output a bar graph

RF Probe with LED Bar Graph 12-3

RF Probe
U2 R1-R10

3300 Bar Graph LED

J1

... S1
ARRL 1111

Figure 12.4- RF Probe Fritzing diagram.

Figure 12.5 - RF
Probe flowchart.

12-4 Chapter 12

Start

Define Variables

-
"

Setup

Setup Digital 1/0 Pins
Setup Analog Input Pin

I
•

Loop

Read RF Probe Input
Output to Bargraph LED

·-
ARRL11 12

representation of the input voltage on the bar graph LED.
The bar graph LED requires 10 digital 1/0 pins to drive it directly. Since

we're not planning for the Arduino to do anything other than drive the bar graph
LED, there's no issue with using most of the Arduino's digital 1/0 pins in this
way. Since consecutive pins were used in the design, we can use a for () loop
to set the LED modes as outputs rather than initializing each digital 1/0 pin
separately.

for (int x=2; x<=ll; x++) II Set pins 2-11 as LED Outputs

pinMode(x, OUTPUT);

In the main loop () the analog voltage is read from the RF sensing unit
and converted into a digital value between 0 and 1023, corresponding to the 0 to
5 V output of the RF sensing unit.

II Read the Signal Strength from the RF Sensor

Signal Strength analogRead(Signal Pin);

The next thing is to determine how many bars to light on the bar graph LED.
Based on my RF testing, a level of approximately 3.6 V from the RF sensing
unit was determined to be a good indication of maximum RF field strength.
Note that with the 1 kQ resistor between the RF sensing unit and the Arduino,
3.6 V will be the maximum value you can expect to see on the Arduino analog
input pin. This level can be adjusted by varying the 10 kQ potentiometer (Rl)
on the RF sensing unit.

Now would be a good time to introduce the Arduino map () statement.
The map () statement is a great way to modify the scale of your data. In this
case, the 0 to 5 V analog input from the RF sensing unit is mapped from a
possible digital value of 0 to 1023 into a value from 1 to 10, with our maximum
indication occurring at a value of 750 (approximately 3.6 V). This tells us how
many LEDs on the bar graph display need to be lit to indicate the RF field
strength. Using the map () statement in this way, the first LED in the bar graph
will always be lit. This is used as a power indicator to let us know the RF Probe
is powered on and ready to go.

II Figure out how many bars to light

II Map the Signal Strength to #of bars (1-10)

II Led one is always on to indicate power

bars map(Signal Strength,0,750,1,10);

Finally, the mapped value from 1to10 is output to the bar graph LED. A
for () loop is used to light the desired number of LEDs in the bar graph, while
a second for () loop is used to make sure the rest of the LEDs in the display

RF Probe with LED Bar Graph 12-5

are turned off, providing a dynamic display of the RF field strength seen at the
RF sensing unit.

for (int x l; x<=ba r s ; x+ +) II Turn on all bars up to the ma pped b a r

digitalWrite(x+l, HI GH); II Turn on the LED ' s

if (bars < 10)

II Make sure the r es t of t he bars are o ff

for (int y = b a r s + l; y<=lO ; y++)

digitalWrite(y+l, LOW); II Turn o f f the LED ' s

Once the prototype was working on the breadboard, a protoshield with
the dropping resistors and connectors for the RF sensing unit and the bar
graph LED was constructed using the schematic diagram in Figure 12.6 and
everything was mounted into a SparkFun Arduino project enclosure (PRT-
10088) as shown in Figure 12.7. The Avago Technologies HSDP-4832 bar
graph LED array I used has three colors of LEDs. The first three LEDs are
green, followed by four yellow LEDs and finally three red LEDs, which allows
you to easily see the display values as they change with the RF field strength.
Due to the simple design and sensitivity of the RF sensing unit, I have used the
RF Probe to sense RF all the way up to 440 MHz.

Enhancement Ideas
This would be an excellent project for an Altoids mint tin and an Arduino

Nano. If you used a BNC connector instead of the S0-239, you could possibly
fit everything inside the Altoids tin with a small cutout for the bar graph LED.
You could also replace the bar graph LED with a small organic LED (OLED)
and calibrate the unit against a real field strength meter and have it provide
a digital representation of the actual field strength. And finally, you could
implement the Maxim MAX7219 LED driver to drive either a bar graph or
7 segment LED, or even display the output as a graph on an 8 x 8 LED array.

12-6 Chapter 12

ARRL1113 R10
'l DS10

'lDS9

'loss

'lDS7

'l DS6

'l DS5

'l DS4

'l DS3

'l DS2

'l DS1

R1-R10, 330 Q
U2

HDSP-4832
d ~ ~ ~ ~ ~ ~ ~ ~ ~ b ~ ~ d 8 ~ 0 8
(/)(f)O:::CJoooo

10 LED Bar Graph

I I <{

I I
I I
I I
I I

Display

U1
Arduino Uno R3

'--- I -=--=--=--=--=--=--=--=--=--=--=--= I

Figure 12.6 - RF Probe schematic diagram.
BT1 - 9 V battery.
01 - 1 N4001 diode.
J1 - 3-pin header with cable and plug to match RF

sensing unit.
R1-R1 o - 330 n, Va W resistor.

Figure 12.7-
lnside view of
the RF Probe.

I I

To
RF Sense

Unit

S1 - SPST toggle switch.
U1 - Arduino Uno.
U2 - Avago Technologies HSDP-4832 10 LED

bar graph array.

RF Probe with LED Bar Graph 12-7

References
Avago Technologies - www.avagotech.com
Maxim Integrated - www.maximintegrated.com
RadioShack - www.radioshack.com
SparkFun Electronics - www.sparkfun.com

Notes
'K. Austermiller, KB9STR, "An RF Driven On-Air Indicator," QST, Aug 2004,

pp 56-57.
2J. Noakes, VE7NI, "The 'No Fibbin' RF Field Strength Meter," QST, Aug

2002, pp 28-29; Feedback Sep 2002 QST, p 88.

12-8 Chapter 12

CHAPTER 13

Solar Battery
Charge Monitor

The finished Solar Charge Monitor mounted in a
Solarbotics Arduino Mega S.A.F.E.

The Arduino, with its low power requirements, is a perfect candidate
for solar-powered projects. The Arduino Uno has a typical current draw of
approximately 55 rnA, while its smaller brother, the Nano, draws a mere
20 rnA. Of course, to power your solar projects, it always helps to have battery
backup for those times when there's not enough sunlight to power things. The
cool thing is you can have your Arduino manage the battery charging process
while it's off performing other tasks . With the cost of solar panels becoming
more affordable every day, you can build your own portable solar charging
system for just a few dollars.

One of the major concerns when using solar cells is the wide variation of

Solar Battery Charge Monitor 13-1

voltage and current supplied by the solar panels due to clouds or the angle of
the sun on the solar panels. To maintain proper battery charge, you'll need
to keep track of the voltage and current supplied to the battery from the solar
panels. With most solar arrays providing 12 V or higher, trying to read this
voltage directly can do horrible things to the 5 V maximum analog input on
your Arduino, if not frying your Arduino itself to a crackly crunch. Fortunately,
you can use a voltage divider to bring the solar array voltage and battery voltage
down to a range that your Arduino can safely use.

Current Monitor
Reading the charging current between your solar array and the battery is

a whole other issue. You really don't want your Arduino anywhere near the
voltages that charge the battery, but you will need to
read the current flowing between the array and the
battery. Fortunately, someone else has faced this issue
and created a module just for this purpose.

The Texas Instruments INA 169 shown in Figure
13.1 is a high-side de current shunt monitor that can
handle up to 60 V de. A high-side monitor can be
inserted anywhere in your circuit, whereas a low-side
device must be inserted between the target ground
and true ground. Since the voltage drop across the
shunt resistor used for measuring is proportional to
the current draw, with a low-side monitor, the ground
reference will change as the current varies. A moving
ground reference can be a bad thing, and is not
something we really want to have to take into account

Figure 13.1 - The INA 169 current sensing in our circuit designs. With a high-side current shunt
module. monitor, we can place it anywhere in our circuit without

fear. The INA169 uses a precision amplifier measuring
differentially across a 0.1 n, 2 W precision sense resistor, allowing you to
read up to 5 A continuously. The output voltage of the module that represents
the current in the circuit under test is in direct proportion to the sense current.
The INA 169 default setting is an output of 1 volt per ampere measured, giving
you an output of 0 to 5 V over the range of 0 to 5 A. The sensitivity of the
current measurement can be changed simply by replacing the onboard 10 kn
measurement resistor with a different value.

The solar panels used for this project are two 150 x 85 mm (5.9 x 3.3 inch)
7 .5 V panels that output up to 220 mA. The idea was to keep this project small,
light, and portable. Taking it to full-scale, I would add two additional sets of
paired panels, giving it a total output of up to 660 rnA, a little more than half
of an amp of solar charging power from a small, portable solar array. The
panels were glued to a small wooden framework and attached to a servo pan/
tilt head assembly. I used a servo pan/tilt mount to allow the addition of servos
and photosensors at a later date to automatically track the sun and maintain
maximum charging rate as the sun moves across the sky. Figures 13.2 and 13.3
show the solar panel assembly.

13-2 Chapter 13

Figure 13.2 - The solar panel array mounted on the
pan/tilt servo assembly.

Circuit Design

.. "-~~-. ,. . .

Figure 13.3 - Rear view of the solar panel array
showing how it is mounted to the pan/tilt servo
assembly.

Now that we have a solar array that can generate our charging current, and a
sensor that can read the current, we can begin designing the actual circuit. Using
the block diagram (Figure 13.4), we'll want to have the Arduino measure the
charging current and the voltage of both the solar array and the battery. With a
maximum of 220 mA charging current for this project, there's really no need
to regulate the charging current between the solar panels and the 5.0 A/h gel
cell battery. Once you get to charging currents of 1 A or more, you will need to
limit the charging current with additional external circuitry. At charging currents
greater than 3 A, you will also need to beef up the blocking diode between the
solar array and the battery. Since the Arduino only draws about 55 mA, we can
also use the solar array to power the Arduino while having enough current left
over to charge the battery.

Since we have large external components that may be carrying higher currents
at some point, the solar array and battery are connected to the Arduino using

Solar Battery Charge Monitor 13-3

Solar Charger Monitor

Solar Cells

Current
Sense
Module

..

Figure 13.4 - Solar Charge Monitor block diagram.

ARRL1115

Solar Charge Monitor

U4
7.SV Solar Cell

U2
INA169

Figure 13.5 - Solar Charge Monitor Fritzing diagram.

13-4 Chapter 13

51

U3

Nokia
5110

LCD Display

Arduino Uno

ARRL1114

Nokia 5110 LCD Module

Ul

AWG #14 wire and Anderson Powerpole connectors (see the sidebar) for quick
disconnecting. If you are planning to use a larger charging current, you will want
to move up to AWG #12 wire or larger, but for my purposes, AWG #14 wiring
can handle anything the solar panels throw at it. Don't forget to beef up the
wiring on the protoboard to the current sensor if you do go higher than 1 A.

Figure 13.5 shows the Fritzing diagram for the project. Since there are
several data points that we'll be monitoring, we'll use a Nokia 5110 LCD
display to show our charging information. With the backlight LEDs off, the
Nokia 5110 also has a very low current drain of about 10 mA, making it the

Anderson Powerpole Connectors
Anderson Powerpole connectors are stackable genderless single conductor housings used for

power interconnections. Available in four basic housing sizes, Powerpoles can be used for quick
disconnect power connections up to 350 A. The most common Powerpole housing used in Amateur
Radio applications is the PP15-45 shown in the accompanying photo. This connector housing can use
15, 30 or 45 A contacts in the same standard size housing. The Powerpole housings are designed
to stack on any side of the housing, allowing you to link multiple Powerpole housings together in a
wide array of configurations to suit your interconnection needs. Powerpole connectors allow you to
standardize all your power connections into a single standard stacked connector configuration, allowing
for quick installation and removal of your equipment and power sources.

Powerpole housings are constructed in such a way that when stacked, it is virtually impossible to
connect them backward. Powerpole connectors come as a two part assembly, the housings and the
contacts. The housings are available in a wide variety of colors and all accept a standard size contact.
The wire is crimped or soldered to the contact and the contact is then inserted into the housing.
Multiple housings can be stacked together to create a standard cable interconnect. The contacts can be
removed from the housing and inserted into a different housing if needed.

I use Powerpole connectors for all my high current connection applications. All of my rotator
controllers have a short pigtail connector to adapt the screw lug connections on the back of the
rotor controller to a standard Powerpole connector stack, allowing quick and easy connection and
disconnection of the rotator controller when it's needed for Field Day and other portable events.
Because the same Powerpole connector stack orientation is used, all my COE/Hy-Gain rotator
controllers are interchangeable with my other COE/Hy-Gain controllers as well as the COE/Hy-Gain
rotator controllers of other members of our club. This comes in real handy at Field Day when quick and
easy setup is the name of the game.

Some of the more modern power supplies, such as MFJ's 4125P and the West Mountain Radio
4005i series, provide Powerpole connector outputs. Powerpole connectors are also available in chassis
mount versions and in power distribution/power splitter configurations, allowing all your Powerpole
outfitted equipment to use a single standard connector to connect to the power source. MFJ and West
Mountain Radio, as well as other suppliers offer fuse-protected Powerpole distribution panels to handle
just about every de power distribution need you may have.

Anderson Powerpole connectors can be used in many configurations.

Solar Battery Charge Monitor 13-5

Start

ideal choice for solar-powered projects. The two 7 .5 V solar panels are wired in
series to provide up to 15 V. In practical use, the output voltage rarely exceeds
14 V in average sunlight.

A 1N5819 Schottky diode is used as a blocking diode to prevent current
from the battery from flowing back into the solar array. The 1N5819 diode was
chosen due to its low forward voltage drop (0.2 V) and 3 A current handling
capability. Since you'll want just about everything you can get out of the solar
array, you would really prefer to have the 0.2 V forward voltage drop of a
Schottky diode over the 0.7 V drop of a standard silicon diode.

You will notice that there are two sets of voltage divider resistor networks
in the circuit. These are to reduce the solar array and battery voltages to levels
that won't damage the Arduino analog inputs. These divider networks will
reduce the voltage to approximately 25% of its actual value. Once the circuit
is operational, we can calibrate the analog-to-digital conversion values with a
digital voltmeter.

The Sketch
Once you have the circuit breadboarded, it's time to design the sketch.

Using the sketch flowchart in Figure 13.6, we'll want the Arduino to read the
solar array voltage, the battery voltage, and the charging current. These values
will be displayed and updated every 5 seconds on the Nokia 5110 display, along
with an indication of whether or not charging is occurring. Since the analog
voltages being read are fed to the Arduino from a resistor divider network, we
will also need to define the calibration values needed to determine the actual de

voltages coming from the solar array and the battery as well
as the analog voltage from the current sensor that represents
the charging current. The complete sketch for this project

Define 1/0 Pins and Variables
Define Nokia 5110 LCD Display

is found in Appendix A and online at www.w5obm.us/
Arduino.

First, you'll need to define the pins and calibration values

Setup

Setup Analog Input Pin
Setup Nokia 5110 Display

Loop

Read Solar Cell Voltage
Read Battery Voltage
Read Charge Current

Output to Nokia Display

ARRL1116

Figure 13.6- Solar Charge Monitor
flowchart.

13-6 Chapter 13

we will use for the analog voltages we'll be providing to the
Arduino. The calibration values are determined by actually
measuring the voltages and current with a voltmeter and
using these values to derive the calibration value needed to
convert the raw values to the proper voltage or current. If you
don't have a voltmeter handy, the values used in the sketch
should do just fine.

#define Amps AO II Define the Analog Input pin for

the current sensor

#define Solar In Al II Define Analog Input pin for

the Solar Cell Voltage

#define Battery_In A2 II Define the Analog Input

pin for the Battery Voltage

II Define calibration value used to map the solar

cell and Battery voltages

#define calibration value 2410

II Define the calibration value used to map the charging current to milliamps

#define amp_calibration 5120

Next, we'll define the Nokia 5110 LCD display and define the Small
Font for the display:

#include <LCD5110 Basic . h> II Use the Nokia 5110 LCD Library

I*
It is assumed that the LCD module is connected to

the following pins.

CLK - Pin 12

DIN - Pin 11

DC - Pin 10

CE - Pin 8

RST - Pin 9

*I
LCD5110 g lcd(1 2,11,10 , 8,9); II Assign the Nokia 5110 LCD Pins

extern uint8 t SmallFont[] ; II define the Nokia Font

The last part of the initialization is used to define the variables holding the
sensor data values:

II Variables to contain the solar cell and battery converted values

float solar_voltage, battery_voltage;

II Var iables to contain the sensor data

int charge , solar , battery, charge current;

In the setup () loop, the Nokia display is initialized and a brief startup
message is displayed to let you know the Solar Charge Monitor is ready for
action. After the startup message, the display is set up to display the template
for the data values:

glcd.InitLCD(70) ; II Initialize Nokia 5110 Display, set Contrast to 65

glcd . setFont(SmallFont); II Set the Font to Small Font

glcd . print("KW5GP", CENTER, 0); II Display the Startup screen

glcd.print("Solar Cell ", CENTER, 8);

glcd . print("Charging" , CENTER,16);

glcd.print("Monitor", CENTER,24);

delay(3000);

glcd.clrScr(); II Clear the LCD screen

glcd . print("Status", CENTER, 0); II Set up the LCD screen for the data

glcd . print("Solar: ",0,16);

glcd . print("Battery: ",0,24);

g l cd.print("Current: ",0,32);

Solar Battery Charge Monitor 13-7

In the main sketch loop (),we'll read the analog voltages and use a
map () statement to convert them into the values we'll send to the LCD. The
calibration values we defined at the beginning of the sketch are used here to set
the voltage range in hundredths of a volt for the solar array and battery voltages,
and in milliamps for the charging current.

II Read the sensors and display the voltages and current

charge= analogRead(Arnps); II Read the current sensor

solar= analogRead(Solar In); II Read the Solar cell voltage divider

battery= analogRead(Battery_In); II Read the Battery voltage divider

II Map the Solar Cell AID value to voltage

solar_voltage = map(solar,0,1023,0,calibration value);

II Map the Battery AID value to voltage

battery_voltage = map(battery,0,1023,0,calibration value);

II Map the Current Sensor AID value to milliamps

charge current map(charge,0,1023,0,amp calibration);

Next the voltage and current values are displayed on the Nokia LCD. The
LCD511 O _Basic. h library has functions to print floating values to the
desired number of decimal points and integers of a fixed length, allowing you to
format the data nicely on the display without having to manually calculate and
add spaces to have all the values line up.

II Display the solar voltage in 11100 of a Volt

glcd.printNumF(solar voltagell00,2,48,16);

II Display the battery voltage in 11100 of a Volt

glcd.printNumF(battery_voltagell00,2,48,24);

II Display the charging current in milliamps

glcd.printNumI(charge current,48,32,4);

Finally, a message is displayed on the LCD to indicate whether or not the
solar array is charging the battery:

if (charge current> 0) II Charging St atus Indicator

glcd.print(" Charging ",CENTER, 40);

else {

glcd.print("Not Charging", CENTER,40);

Figure 13.7 shows a sample display during operation. Once the circuit was
fully functional and the sketch debugged, the schematic was created from the
breadboard wiring (Figure 13.8), the project was soldered up on an Arduino

13-8 Chapter 13

Figure 13. 7 - Close-up view of
the Solar Charge Monitor display.

Figure 13.8- Solar Charge Monitor
schematic diagram.
BT1 - 12 V gel cell battery.
01 - 1 N4001 diode.
02 - 1 NS819 Schottky diode.
R1 - 220 n, Ya W resistor.
R2, R4 - 3.9 kn, Ya W resistor.
R3, RS - 1 kn, Ya W resistor.
S1 - SPST switch.
U1 - Arduino Uno.
U2- INA169 current sense module.
U3 - Nokia S110 LCD display.
U4, US- 7.S V solar cell.

7.5 V Solar Cells

02

U2
INA169

IP+

I Vee

~ VOUT
3

3.9 kO GNO
2

IP-

1 kO

J_
BT1-=- 12 V

-~
l

U3 Nokia 5110

R1
2200

+3.3 v

~ ~ ~ 0 M N ~ 0 m 00 ~ ~ ~ ~ M N ~ 0
~ ~ ~ a 0 0 0 0 o o o o o o o o o o

I I <(

I I
I I
I I
I I

U1
Ar du i no Uno R3

'--- I -=--=--=--=--=--=--=--=--=--=--=--= I

R2

R3

0
UJ
>
ll'.'.u_f- N~
~UJ~ 00
UJa::UJ>>zz~ a:: Q a::<')"'(!)(!)>

01

1N4001 Power

3.9 kO

1 kO

I I
<(..J
0 (.)

~<~~~~

ARRL 1117

Solar Battery Charge Monitor 13-9

13-10

protoshield and moved into a Solarbotics Mega Arduino S.A.F.E. enclosure.
Under actual indoor conditions, the charging current after powering the Arduino
runs about 80 mA- enough to slowly charge the battery.

Enhancement Ideas
You've already seen a glimpse of one of the possible enhancement ideas

for this project. It is my ultimate plan to add an additional two sets of solar
panels and add servo tracking capability using the pan/tilt servo head with
phototransistors mounted on the four comers of the solar array to locate and
track the sun across the sky to maintain the maximum charging current. The
Arduino would measure the differences between the four phototransistors and
automatically move the servos for maximum output.

You could also replace the INA169 current sensor with the newer INA219
version. The INA219 communicates with the Arduino using the PC interface
and has program-selectable internal gain settings to select the desired current
sensing range. Since the INA219 uses the PC bus rather than an Arduino
analog input pin, you can have up to four INA219 current sensors in your solar
powered projects, allowing you to monitor all aspects of your circuits. The
INA219 uses a 12-bit analog-to-digital converter to translate the current into
a digital value send to the Arduino over the PC bus. The INA219 also has an
internal voltage sensor, saving you additional analog input pins.

You could also add a day/night sensing capability using phototransistors to
turn off the Solar Charging Monitor when the sun goes down to reduce battery
drain and turn it back on when the sun comes back up. There's also no reason
that this project could not be scaled up to control a much larger, higher capacity
solar array. All you would need to add is a charging current regulator circuit
and geared stepper motor or worm gear-driven motor to do the positioning on a
larger solar array.

Finally, to make the project even more portable and energy efficient, you
can replace the Arduino Uno with a smaller Arduino, such as a Nano, and
mount everything in the base of the solar panel assembly. Using a Nano instead
of the Uno would save you about 30 mA of charging current, giving you just
that much more charging current to the battery.

I'm really looking forward to using this project to charge and power the
alternative power QRP station we use at ARRL Field Day and I think it would
be neat to watch the solar panels track the sun across the sky all on their own.

References

Chapter 13

Adafruit Industries - www.adafruit.com
Anderson Power Products - www.andersonpower.com
Henning Karlsen - www.henningkarlsen.com/electronics/
Texas Instruments - www.ti.com
Solarbotics - www.solarbotics.com
SparkFun Electronics - www.sparkfun.com

CHAPTER14

On-Air Indicator

The finished On-Air Indicator mounted
in a SparkFun project enclosure.

One of the fun things you'll discover about the Arduino is its versatility. It's
like having an adult Erector Set. You can build something, make it work, take it
apart, rearrange the pieces, and you've got something entirely different. Such is
the case with the On-Air Indicator. Using some of the same pieces we built for
the RF Probe in Chapter 12, we can create an entirely different project with an
entirely different purpose.

As I mentioned back when we built the CW Beacon and Foxhunt Keyer,
my friend and fellow Arduino builder, Tim Billingsley, KDSCKP, operates a
finicky 10 meter beacon. Sometimes it just goes dead without warning. Until we
can dig into things and see what exactly is going on, Tim wanted a better way
to tell if the beacon was actually transmitting without having to leave a power/

On-Air Indicator 14-1

RF
Sense
Unit

ARRL1118

LED

Arduino Uno

Figure 14.1 - On-Air Indicator block diagram.

Relay

SWR meter attached to it, looking at the beacon transmitter's meter, or leaving
a receiver tuned to the beacon frequency all the time. With just a few twists and
a slightly different circuit design, we can tum the RF Probe from Chapter 12
into an On-Air Indicator. Like Tim, you can use it to verify that your beacon is
transmitting, or you can use the relay output to light a sign on your shack door
telling others that you're busy chasing some DX and to enter quietly, or slide
your dinner under the door.

Unlike the RF Probe project, we're not really interested in the signal strength
- we're more concerned with whether or not there is a signal. Since we're only
looking for an on or off indication, as the block diagram (Figure 14.1) shows,
we've replaced the bar graph LED with a single LED and a relay output to
indicate when an RF signal is present.

At the heart of this project is the exact same RF sensing unit we built for the
RF Probe project in Chapter 12. This time around, we'll use the RF sensing unit
to determine the presence of an RF signal rather than read the signal's strength,
and we'll have the Arduino read the probe and trigger the LED and relay if the
signal strength exceeds a threshold value.

If you haven't already built the RF sensing assembly, you can find the
parts list and instructions for building one in Chapter 12. Now you can see the
benefits of using standard connectors for all the pieces of your projects. If you
built the RF Probe project, all you have to do is disconnect the RF sensing unit
from the RF Probe project, connect it to the Arduino protoshield used on this
project and you're almost ready to roll.

Figure 14.2 shows the Fritzing diagram for the On-Air Indicator. You can
see where we've replaced the bar graph LED from the RF Probe project with
an LED and a relay driven by a 2N2222A transistor. Whenever you use a relay
in this manner, be sure that the relay has an internal clamping diode, or add one
externally to prevent reverse voltage from damaging the transistor when the
relay is de-energized. As a general rule, I always include a 1N4001 clamping
diode (D2) in the circuit design and leave it out if the relay I end up using has
an internal clamping diode.

14-2 Chapter 14

On Air Indicator

J1

To RF Sense Unit

ARRL 1119

BT1
9V

n-'
U R1

4700

DS1

-11·-
I Indicator J

2L
Relay

i Out

1N4001
D1

-- l.ll. S1
... Power

K1
HK19F-DC5V-SHG

Figure 14.2 - On-Air Indicator Fritzing diagram.

Start

Define Variables

' '

Setup

Setup Digital 1/0 Pins
Setup Analog Input Pin

1'

Loop

Read RF Probe Input
Turn on LED and Relay if

RF input threshold exceeded

ARRL1120

The Sketch
Figure 14.3 shows the flowchart for the sketch used in

this project. With projects as straightforward as the On-Air
Indicator, you may not need a flowchart, but I have found
that it helps to flowchart every sketch. It's a good habit to
get into and helps you stay on track as you write the sketch.
With a flowchart, even if your sketch building is interrupted,
you can use the flowchart like a checklist and pick right back
up where you left off. In keeping with the Erector Set theme,
the sketch for the On-Air Indicator is based on the sketch we
used in the RF Probe project.

Now that you have the circuit wired up and ready to go,
it's time to write the sketch itself. Starting out, we'll define
the 1/0 pins and signal threshold, along with the LED delay
and relay hold delay. You may have noticed that the Arduino
1/0 pins are usually defined at the start of the sketch. This is
done to give the 1/0 pin a name that we can remember. It's a
whole lot easier to remember that digi talWri te (relay,

Figure 14.3 - On-Air Indicator flowchart.

On-Air Indicator 14-3

HIGH) turns on the relay as compared to the digi talWri te (2, HIGH)
statement we would have to use if we had not defined the 1/0 pins. For more
complex sketches, having all the 1/0 pins defined makes keeping track of
what's going on in the sketch a whole lot easier. Our design calls for the On
Air Indicator to turn on the LED and relay when the RF signal detected by the
RF sensing unit exceeds a desired threshold. The LED and relay will remain
energized for a specified delay time when no signal is detected.

#define Signal Threshold 100 II The signal strength required to turn on

#define Signal Pin AO II define the Analog Input pin for the RF sensor

#define relay 2 II define the Relay control pin

#define LED 3 II define the LED pin

#define ho l d time 2000 II Hold for 2 seconds after signal input goes away

We'll also need to define a few variables to keep track of things in the
sketch. Here we've introduced the Boolean variable type. Boolean variables
are used to indicate an on or off, high or low, true or false binary state. Boolean
variables use less memory than other variables and work well in simple yes/no
decision points within your sketch. You will also note that the variable type for
the timeout value is an unsigned long integer. This is needed since we will be
using the Arduino mi 11 is () function to determine when to turn off the LED
and relay. The mi 11 is () function returns an unsigned long integer value,
so we will need to use variables with the matching variable type to be able to
calculate the turn-off time.

int Signal Strength= O; II stores the value coming from the RF sense unit

unsigned long timeout= 0; II stores the timeout time

bool on air false; II indicates that the on air indicator is active

The setup () loop for the On-Air Indicator is used to set the pin mode
for the LED and relay control pins and to make sure they are turned off before
the main loop () begins. As you can see, using the defined names for the pins
rather than the pin number makes it much easier to follow what the sketch is
doing.

pinMode(relay, OUTPUT); II set the relay control pin

pinMode(LED, OUTPUT); II set the LED pin

d i g italWrite(relay, LOW); II Turn off the relay and LCD

digitalWrite(LED, LOW);

In the main loop () , we read the analog signal strength and if the value
exceeds the predefined threshold, the LED and relay are turned on. The hold
delay is then added to the current value of mi 11 is () . As long as the signal
strength exceeds the threshold value, the delay timer continues to be added to
the current mi 11 is () value.

When the signal strength drops below the threshold, the sketch continues to
check for the current mi 11 is () value to exceed the time saved in the timeout
variable. When the current time exceeds the stored value, the LED and relay are
turned off.

14-4 Chapter 14

ARRL1121

R2
470 Q

K1

HK19F-DC5V-SHG

4700

J2

~w
Indicator

Relay
Out

DS1

~ ~ ~ 0 M N ~ 0 m 00 ~ W ~ ~ M N ~ 0 u 0 w z ~ ~ ~ ~ 0 0 0 0 0 0 0 0 0 0
rnrna:: 0 oooo

I I <

I I
I I
I I
I I

U1
Arduino Uno R3

'- I -=--=--=--=--=--=--=--=--=--=--=--: I

Figure 14.4- On-Air Indicator schematic diagram.

BT1 - 9 V battery.
01, 02 - 1 N4001 diode.
0$1 - 5 mm LED.
J1 - 3-pin header with cable and plug to match RF

sensing unit.
J2 - Jumper header or builder's choice of jack.

I I

To
RF Sense

Unit

K1 - 5 V relay (HK19F-DC5V-SHG).
01 - 2N2222A transistor.
R1, R2 - 470 n, Vs W resistor.
$1 - SPST switch.
U1 - Arduino Uno.

On-Air Indicator 14-5

II Read the Signal Strength from the RF Sensor

Signal Strength = analogRead(Signal Pin);

II Turn on relay and LED if threshold is exceeded

if (Signal Strength >= Signal Threshold)

digitalWrite(relay, HIGH);

digitalWrite(LED, HIGH);

timeout= millis() +hold time; II set the timeout time

on air = true;

II If we've passed the timeout time, turn off the relay and LED

if (millis() >t imeout && on_air)

digitalWrite(relay, LOW);

digitalWrite(LED, LOW);

on air = false;

Once the project and sketch were debugged and working on the breadboard,
the schematic (Figure 14.4) was used to build the Arduino protoshield and the
finished project was mounted in a SparkFun Arduino project case. Figure 14.5
shows the finished project.

Enhancement Ideas
You can tum this project into a wireless On-Air Indicator if you were to

use an Arduino Nano and mount all the components, including the RF sensing

Figure 14.5 - Inside view of the On-Air Indicator.

14-6 Chapter 14

unit inside an LED lightbox with a clear front plate and a mask for the On-Air
lettering. You could power everything with batteries, use a small antenna for RF
sensing extending outward from inside the box, and hang it on the wall outside
your shack whenever you're operating.

References
SparkFun Electronics - www.sparkfun.com
K. Austerrniller, KB9STR, "An RF Driven On-Air Indicator," QST,

Aug 2004, pp 56-57.
J. Noakes, VE7NI, "The 'No Fibbin' RF Field Strength Meter," QST,

Aug 2002, pp 28-29; Feedback Sep 2002 QST, p 88.

On-Air Indicator 14-7

CHAPTER15

Talking SWR Meter

1. 5917969
0.4174367

1. 7 : 1

The finished Talking SWR Meter mounted in a Solarbotics
Arduino Mega S.A.F.E.

One of the fun things about the Arduino is that there are more and more new
devices and modules available for it all the time. This project was originally
designed to be just a standard digital SWR meter. While ordering some of the
enclosures I was planning to use for my projects, I came across the Ernie 2 text
to-speech module. Suddenly a whole range of new project ideas came to mind.

The first thought was my typical, "How cool would it be to have an SWR
meter that could speak and tell you what the SWR is?" This was quickly
followed by the realization that the Ernie 2 text-to-speech module would open

Talking SWR Meter 15-1

up a whole world of new projects for operating in low light conditions, and for
visually impaired hams. Several of my ham friends are visually impaired and
now I had ideas for projects they could build (or have someone build for them)
and get some serious usefulness out of them. Also, since many of our club's
operating events are at night with the usual dim lighting, the idea of an SWR
meter that could speak the SWR had my complete attention.

The Emic 2 Text-to-Speech Synthesizer
The Parallax/Grand Idea Studios Ernie 2 shown in Figure 15.1 is not your

run-of-the-mill text-to-speech synthesizer. In addition to converting standard
ASCII text to speech, the Ernie 2 natively converts the text into English or
Spanish and has nine pre-defined voice styles, along with dynamic control of
various speech characteristics such as pitch, speaking rate, and word emphasis.
All of these features can be controlled from within your sketch and changed

SWR
Sense
Module

ARRL1122

Figure 15.1 - The Parallax/Grand Idea Studios
Ernie 2 text-to-speech module.

Nokia
5110

LCD Display

Arduino Uno Emic2
Text To Speech

Module

Figure 15.2 - Talking SWR Meter block diagram.

15-2 Chapter 15

on the fly. The Ernie 2 communicates with the Arduino using a standard TTL
serial port at 9600 baud and works well with the Arduino Software Serial
library, allowing you to use any two digital 1/0 pins to connect the Ernie 2 to the
Arduino. The Ernie 2 is a fully self-contained module that includes a 300 mW
on-board audio power amplifier and a standard 3.5 mm audio jack. The output
volume can also be controlled from within your sketches. Figure 15.2 is a block
diagram of the project.

SWR Sense Head
Now that we know what we're going to do with the SWR data when we

get it, we have to figure out a way to read the SWR and pass that information
on to the Arduino. Remember in the Introduction when I told you how handy
The ARRL Handbook can be? As it turns out, others have passed this way
ahead of us and left some very useful breadcrumbs. Recent editions of The
ARRL Handbook have a section on building a microprocessor controlled SWR
monitor.1 While the circuit design in the Handbook is for a Parallax "Propeller"
microprocessor, the SWR sensing head used in the Handbook project is perfect
for our needs. Figure 15.3 shows the circuit.

The SWR sense head described in the ARRL Handbook is based on "The
Tandem Match-An Accurate Directional Wattmeter" by J. Grebenkemper,

J1

02
1N5711

HBK0627

J2
~--1-----------r

T1

ch

R1
49.9

1200pF l

R2
49.9

rc2
l1200pF

VFWD tip ring VREF

3.5 mm stereo jack

NOTE:

>-../

Single-turn windings formed by
short lengths of RG-58 coax
through toroid cores.
Ground shield at one end only.

T1 and T2 wound on FT50-43 toroid cores.
10 turns for 10 watt unit,
31 turns for 1 00 watts

tip~ring
~ Stereoiack

shield rear view

Figure 15.3 - SWR sense head schematic from The ARRL Handbook.

C1 , C2 - 1200 pF, 50 V capacitor. T1, T2 - FT50-43 toroid core; 10 turns
01, 02 - 1 N5711 Schottky diode. for 10 W unit, 31 turns for 100 W unit.
J1, J2 - S0-239 coax jack or builder's R1, R2 - 49.9 n, 114 W resistor.

choice. Radio Shack (P/N 270-238) aluminum
J3 - Ya inch mini stereo phone jack. project enclosure

Talking SWR Meter 15-3

KA3BL0.2 Using a simple and easy-to-construct design, the SWR sense head
will output an analog voltage representation of both the forward and reflected
power simultaneously. We can supply these voltages to the Arduino's analog
inputs and directly read them.

I built my SWR sense head using the exact circuit design in the 2013 ARRL
Handbook on a small piece of perfboard mounted inside a Radio Shack (PIN
270-238) aluminum project enclosure to provide RF shielding. The Handbook
project used surface-mount components, but I used leaded parts in my version.
In the Handbook design, you have the option of building the unit for sensing
10 W or 100 W simply by changing the number of turns of wire on the two
toroids used to transfer a small amount of RF energy into the SWR sensing
circuitry. For this project, I chose to build the 10 W version, but there would
not be any issues at all if you chose to build the 100 W version for your project.
Figures 15.4 and 15.5 show my completed SWR sense head.

Figure 15.4 - Inside view of the SWR sensing unit.

Figure 15.5 - Rear inside view of the SWR sensing unit.

15-4 Chapter 15

Arduino and Related Hardware
Now that we have all the parts and pieces ready, we can use the Fritzing

diagram (Figure 15.6) to start breadboarding up the Arduino side of things.
Whatever you do, don't forget to include the 5.1 V Zener diodes (D2 and D3)
on the SWR sense head inputs to the Arduino. These diodes are there to prevent
any SWR signal input voltages from exceeding 5 V and potentially damaging
the analog inputs of the Arduino. Also, notice that the Ernie 2 module is not
connected to the standard Arduino serial pins 0 and 1. We will be using the
Arduino Software Serial library to communicate with the Ernie 2 on
digital 110 pins 2 and 3.

Why Use the Software Serial Library?
You may be asking why this project is using the Software Serial

library to communicate with the Ernie 2 when the Arduino already has a

Talking SWR Meter 0

U3
Nokia 5110 LCD Module

I 1
J1 !=:::::==~====:=;=====! •. ~ .. ~

To SWR Sense Unit
D2
1N4733

ii

1 1N4001
----.' Dl

BTl
9V

Figure 15.6 - Talking SWR Meter Fritzing diagram.

51

0 ARRL1123

frltz.ing

Talking SWR Meter 15-5

perfectly usable serial port on digital 1/0 pins 0 and 1. The reason we use the
Software Serial library is that the Arduino shares the USB port used
to connect to your workstation with the hardware serial port on digital 1/0
pins 0 and 1. This means that when you have the Arduino connected to your
workstation and you're uploading sketches or using the Seria l Monitor
in the IDE, you can't use the hardware serial port to talk to other devices. The
easy way around this is to use the Software Serial library and attach
the Ernie 2 or other serial device to any two digital 1/0 pins of your choosing.
The Arduino Leonardo has addressed this issue, and actually has two hardware
serial ports onboard. You could use an Arduino Leonardo in this project
instead of an Uno if you would prefer to use a hardware serial port instead of
the Software Serial library. Since the Uno and its variants are currently
the most common Arduinos, we'll use the Uno and the Software Serial
library for this project.

The Sketch
With the circuit ready on the breadboard, we can start putting together the

sketch. While this may seem like a somewhat complicated project, using the
flowchart in Figure 15.7 we can break it down into bite-size pieces. For me,
that is the key to writing Arduino sketches. When you look at them as a whole,
they may seem difficult and complex. When you break the sketch down into

15-6 Chapter 15

Start

Define Libraries
Define Variables

Define Nokia LCD
Define Text to Speech Serial Port

Setup

Setup Digital 1/0 Pins
Setup Analog Input Pins

Initialize Nokia LCD
Initialize Text To Speech Serial Port

Loop

Read SWR Forward and Reverse Voltages
Display SWR on LCD

Check SWR Speech Enable Switch
Speak SWR if enabled

ARRL 1124

Figure 15.7 -Talking SWR Meter flowchart.

smaller pieces, you soon realize that it really isn't that difficult at all. They key
is to plan things out ahead of time, and you can use your flowchart like a map to
stay on course. You can find the complete sketch and libraries for this project in
Appendix A and online at www.wSobm.us/ Arduino.

In the initialization part of the sketch, we start by defining the Nokia 5110
LCD display and the Software Serial libraries, assigning the I/O pins,
and initializing the library objects:

#include <LCD5110 Basic.h>

LCD5110 glcd(12,ll,10,8,9);

extern uint8 t SmallFont[];

II Include Nokia 5110 LCD Library

II Define the LCD object

II Define the LCD Font

II i nclude the SoftwareSerial library for the Ernie 2 module

#i n clude <SoftwareSerial.h>

#define rxPin 2

#define txPin 3

II Serial input (connects to Ernie 2 SOUT)

II Serial output (connects to Ernie 2 SIN)

#define audio on 7 II Audio Enable Switch Pin

II set up a new serial port

SoftwareSerial emicSerial = SoftwareSerial(rxPin, txPin);

Next, we'll define the constants and variables used in the sketch. Since we
want to calculate voltage from the digital values provided by the Arduino's
analog-to-digital (AJD) converter, we define the conversion value for one
AJD count. Since the SWR voltages will be small and we'd like them to be as
accurate as possible, we'll use the float variable type for these variables.

II Volts per ADC count (0 to 5 volts, 0 to 1023 AID counts)

#define adc count 0.0048828125

float V Fwd, V Ref= 0, V_SWR ; II Define the variables

In the setup () loop, we do the usual pinMode () thing to set up the
I/O pins for the Ernie 2 and the Audi o Enable switch on pin 7. Notice that
we are also performing a d i gi talWri te () to the Audio Enable switch
pin while it is configured as an input. This enables the internal 20 kn pull-up
resistor on that I/O pin, saving us from having to use an external pull-up resistor
on the Audio Enab l e switch pin.

pinMode(rxPin, INPUT);

pinMode(txPin, OUTPUT);

pinMode(audio on, INPUT);

digita l Write(audio on, HIGH); II Enable internal 20K pullup resistor

Next, we'll start the Software Serial port and configure it for 9600
baud, which is the default baud rate used by the Ernie 2. We'll also start the
Nokia LCD and show a brief startup message so we can tell that things are

Talking SWR Meter 15-7

running. You can also set the Nokia 5110 display contrast by including the
contrast value as a parameter in the gl c d. Ini tLCD () command. The
default setting for the contrast is 70, however I have found that there is a wide
variation in the contrast between display modules, and that contrast also varies
significantly with the voltage supplied to V cc on the Nokia 5110 LCD.

emicSerial.begin(9600); II s e t t h e data ra t e f or the So f tware Serial p ort

glcd.InitLCD(60); II Init i al iz e the Nokia 5110 Disp l ay , s e t cont rast to 60

glcd.setFont(SmallFont);

II Display the Star tup scre en

glcd.clrScr();

glcd.print("KW5GP", CENTER, 0);

glcd.print("SWR Meter", CENTER, 8);

delay(3000);

glcd.clrScr();

In the final portion of the setup () loop, we'll initialize the Ernie 2
module, select the voice we want to use, and set the volume level. Note that if
your sketch seems to hang at this point, check the connections to the Ernie 2,
as the sketch will not continue until it receives the colon(:) character from the
Ernie 2 to indicate that it is online and ready to accept data.

emicSerial.print(' \ n'); II Send a CR in cas e t h e s y s tem is already up

I* When the Ernie 2 ha s i n i t i al i zed and i s ready , i t will s end a single

character, so wait he re until we rece i ve it

I *
while (emicSerial. re a d () ! = ':');

dela y (lO); II Shor t de l ay

emicSerial.println("nl"); II Set vo i ce to Vo i ce 1

delay(500);

emicSerial.print(' v '); II Se t t he volume to +18 db

emicSerial.println("l 8");

emicSerial.flush(); II Flush the rec e i ve buf f er

'.,

Now we're ready to start the main loop ().First we read the forward and
reverse voltages coming in on the Arduino analog input pins. The values are
then converted to their actual voltages and displayed on the Nokia LCD.

15·8 Chapter 15

glcd .print("Fwd:", 0 , 0); II Display the SWR information on the LCD

glcd.pr i nt ("Ref:",0, 8);

II Read the analog inputs and convert them to voltages

V Fwd analogRead(O) * adc count;

V Ref = ana logRead(l) * adc_count;

II display the Forward and Reflected vo ltages

glcd.printNumF(V_Fwd, 7,30 , 0);

glcd . printNumF (V_Ref ,7, 30 , 8) ;

Next we'll calculate and display the SWR. As an error check, if the reflected
voltage is higher than the forward voltage, the SWR is reported as 0. To protect
your equipment, don't transmit without either an antenna or dummy load
connected to your radio. Also, you should not transmit when the SWR at the
transmitter exceeds 3: 1 unless your transmitter has an internal tuner and can
adjust the SWR to a safe level. Many modem radios also have SWR protection
circuits to limit the transmitter power output when high SWR is detected, but
that is not a good reason to tempt fate. If your SWR exceeds 3: 1, troubleshoot
and repair the problem, and do not transmit at full power until you have the
SWR within a safe range for your transmitter.

For my testing and calibration, I used a TEN-TEC Rebel Model 506 QRP
CW transceiver with the output set to 3 W, and compared the SWR readings
into a 50 n dummy load and my GAP Challenger HF vertical antenna with a
Diamond SX-600 SWR/power meter. The SWR readings between the Diamond
SX-600 and my homebrew SWR sense head were within 5% of each other on
both 20 and 40 meters, and no adjustments or modifications were needed on the
SWR sense head.

II Calcu l ate VSWR

if (V_Fwd > V_Ref)

V SWR = (V_Fwd + V_Ref) I (V_Fwd - V_Ref);

else {

V SWR O; II Display SWR of 0 to l if Reflected greater than Forward

II Disp l ay the VSWR

glcd.print (" SWR: ",0,24);

glcd . print(" ",30,24);

glcd.printNumF(V_SWR ,1, 30,24);

glcd .pr int(" : 1",56,24);

Now for the fun stuff. We'll check to see if the Audio Enable switch on
digital I/O pin 7 is turned on. If it is, we'll have the Ernie 2 speak the SWR for
us.

Talking SWR Meter 15-9

if (digitalRead(audio_on) == LOW)

{

II Audio is enabled - speak the SWR

II Send the Ernie 2 the command to speak the text that follows

ernicSerial.print('S');

II Send the desired string to convert to speech

ernicSerial.print("S WR is");

ernicSerial.print(V_SWR,1);

ernicSerial.print(" to 1");

II Send the Ernie 2 the New Line character to signify end of text

ernicSerial.print('\n');

I*
Wait here until the Ernie 2 responds with a

accept the next command

'' ·" indicating it's ready to

*I
while (ernicSerial. read () ! = ':');

15-10

Once the circuit and sketch were tested and debugged, the finished project was
moved onto an Arduino protoshield using the schematic diagram in Figure 15.8.
The completed project was mounted inside a clear Solarbotics Mega S.A.F.E.
enclosure to protect the Arduino and internal components from the elements.

Enhancement Ideas
With proper shielding, you could use a smaller Arduino such as a Nano, and

house the entire project inside the SWR sense head project box. The Ernie 2 text
to-speech module opens up a wide variety of enhancement options, such as using
the module to provide an alert when the SWR exceeds a preset level. We had
hours of fun coming up with phrases we would have the SWR meter speak when
it encountered alarm conditions, most of which cannot be repeated here. You
could also add an RGB LED to indicate the SWR status for those times when
you don't want the distraction of the speech module. Finally, it would be ideal to
add the forward and reflected transmitter output power to the display and have
the Arduino speak the power as well. All you would need to do is calibrate the
forward and reflected SWR voltages to a known-good power meter, calculate the
power based on the readings, and display them on the Nokia LCD.

References

Chapter 15

Diamond Antennas - www.diamondantenna.net
GAP Antenna Products - www.gapantenna.com
Grand Idea Studio - www.grandideastudio.com
Henning Karlsen - www.henningkarlsen.com/electronics/
Parallax- www.parallax.com

+5V

U3 Nokia 5110 GND
2 5V

U2
3 sour EMIC2 4

SIN
5 Text to Speech

+3.3 v

Figure 15.8 - Talking
SWR Meter schematic
diagram.

ToSWR
Sense Unit

GNO

Forward Power Voltage

Reflected Power Voltage

BT1 - 9 V battery.

0 1: (.) z Cl ()
CJ :.::; >

R1
470 Q

:i ~ 0 w tn
0 0 0 0 a:::

5 4 3 2 1

U1
Arduino Uno R3

0c~1pc2
µF 0.01

02
1N4733 03

1N4733
µF

C1, C2 - 0.01 µF, 35 V ceramic capacitor.
01 - 1 N4001 diode or equivalent.

LS1 - 8 n mini speaker.
S1 - SPST toggle switch.
U1 - Arduino Uno.

SP+
6 SP-

LS1

02, 03 - 1 N4733 5.1 V Zener diode.
J3 - Jumper header or builder's choice of jack to

match SWR sense head.

U2 - Ernie 2 text-to-speech module.
U3 - Nokia 511 O LCD display module.

RadioShack - www.radioshack.com
Solarbotics - www.solarbotics.com
TEN-TEC - www.tentec.com

Notes

Module

ARRL1125

1"A Microprocessor Controlled SWR Monitor'' by Larry Coyle, K1QW, appears in Chapter 24,
Station Accessories, of the 2010 to 2014 editions of The ARRL Handbook for Radio
Communications. In my 2013 edition the project is on pages 24.4 - 24.9.

2J. Grebenkemper, KA3BLO, "The Tandem Match - An Accurate Directional Wattmeter," QST,
Jan 1987, pp 18-26.

Talking SWR Meter 15-11

CHAPTER16

Talking GPS/UTC Time/
Grid Square Indicator

The finished GPS/UTC Time/Grid Square Display
mounted in a Solarbotics Arduino Mega S.A.F.E.

A Global Positioning System (GPS) receiver/display can do more than just
tell you latitude, longitude, and how to get where you're going. Since a GPS uses
highly accurate timing signals to determine your location, it can also provide
very accurate time information. In fact, there is a whole series of National
Maritime Electronics Association (NMEA) messages, or "sentences" that use
the timing information provided by the GPS satellites, and that information
is processed by a GPS receiver into usable information. Using these NMEA
sentences, we can extract all kinds of useful information from our GPS receiver.

Talking GPS/UTC Time/Grid Square Indicator 16-1

So what can we do with all this GPS information? Up until recently, I was
asking myself the same thing. I've had a GPS unit in my car for years, and aside
from that one time it sent me down a dirt road out into the middle of a com
field, it's been very handy and reliable. At a recent Arduino presentation, I was
asked to create several new projects for the Arduino and introduce them during
the presentation. One of these projects was a simple UTC/local time clock using
a real time clock-calendar module. This worked well, but you had to set the
time manually and while the clock was reasonably accurate, it would still drift
and lose a few seconds of accuracy over time.

Maidenhead Grid Locators
What are these "grid squares" you keep hearing about? The

Maidenhead Locator System was devised in 1980, at a meeting of
European VHF managers to create a global geographic coordinate
system that Amateur Radio operators could use to denote their
location. Named after the town in England where the meeting was held,
Maidenhead grid locators divide the world into small areas, measuring
1° of latitude by 2° of longitude (approximately 70 by 100 miles in the
continental US). A grid square is composed of 4 to 6 characters and is
measured northward starting from the South Pole and eastward starting
from the anti-meridian of the Prime Meridian in Greenwich, England
(somewhere in the middle of the Pacific Ocean).

The first two letters of a grid square, also known as the field, are used
to denote 18 separate 20° blocks of longitude and latitude, denoted by
the letters A thru R. The first letter is the longitude and the second letter
is the latitude. The field is followed by a pair of numbers, known as the
square. These numbers range from 0 thru 9 each and divide the field
into "squares" of 1° latitude by 2° longitude, with the first number being
longitude and the second number being latitude. Optionally, the grid
square can be further divided into subsquares of 2.5 minutes of latitude
by 5 minutes of longitude (approximately 3 by 4 miles in the continental
US), denoted by a pair of letters a-x, with the first letter representing
longitude and the second letter representing latitude.

As an example, my longitude is 90.0223° W. This places me within the
fifth block of 20° of longitude from the anti-meridian, so the first letter of
my grid square is "E". My latitude is 34.9799° N, which places me within
the thirteenth block of 20° from the South Pole, so the second letter of
my grid square is "M". Within the field, the calculations show that I am
in the fifth 2° block of longitude. Since the numbering system starts at
zero, the first number in my square is "4". Applying the same calculation
to my latitude, the calculation shows that I am also in the fifth 1° block
of latitude. Therefore, my grid square is EM44. You can continue the
calculations on down to the subsquare and determine that my exact grid
square is EM44xx. Fortunately, the formula for calculating grid squares
has already been developed for us, so there is rarely a need to calculate a
grid square manually.

16-2 Chapter 16

Precise Time Signals
Shortly thereafter, I got involved in a team effort to get the JT65-HF digital

communications mode running on the new TEN-TEC Rebel Model 506 QRP
CW transceiver. The Rebel is an Open Source QRP CW transceiver based on
the Digilent chipKit Uno32, an 80 MHz variant of the Arduino Uno. The Rebel
uses a Texas Instruments AD9834 direct digital frequency synthesis (DDS)
integrated circuit to generate the transmitted signal as well as the IF mixing
signal for the receive side of the Rebel. Through the use of some serious magic
and some absolutely amazing coding by Joe Large, W6CQZ, the team came up
with a method to actually command the chipKit Uno32 in the Rebel to shift the
AD9834 DDS transmit frequency on the fly to generate the 64 tones necessary
for JT65 .

Since the Rebel is an ideal portable QRP transceiver that can go with you
just about anywhere, we wanted a way to acquire accurate time anywhere for
the JT65-HF mode to function correctly. The JT65-HF protocol requires that a
transmission must start at precisely 1 second into a new minute. If you 're out in
the middle of nowhere with no Internet access to NTP (Network Time Protocol)
time servers, your only option is to set the time manually on the workstation
running the JT65-HF software. We wanted the JT65 operations on the Rebel to
be totally self-sufficient and not rely on any external time source for the time
synchronization. The light bulb came on, and a GPS interface was quickly built
on a modified Arduino protoshield and mounted on the chipKit Uno32's shield
expansion pins inside the Rebel. Our Rebel prototype can now provide accurate
time and location, and as an added treat, it can also calculate and display your
current Maidenhead grid locator. (Hams usually just call these "grid squares."
See the sidebar, "Maidenhead Grid Locators.")

Ok, so what if you don't use JT65 or don't have a Rebel? Well, many of
the contests, particularly the VHF contests, use your grid square as part of the
contest exchange. If you're into mobile operating, it's difficult to keep track
of your grid square as you travel down the road. It's also cool to have this
project around for Field Day and other portable events, providing accurate time,
altitude, and grid square information.

Skylab GPS Receiver
The Skylab SkyNav SKM53 shown in Figures 16.1and16.2 is a fully

self-contained GPS module that supports the standard NMEA-0183 messaging
format. With its -165 dBm tracking sensitivity, the SKM53 works well even
in "urban canyons" and dense foliage environments. Capable of tracking up to
22 GPS satellites, the SKM53 can provide highly accurate location, time, and
altitude information. The SKM53 also provides heading and speed information,
allowing it to be used for navigation in addition to providing fixed location
information. The SKM53 communicates with the Arduino using a standard TIL
serial port running at a default speed of 9600 baud.

Talking GPS/UTCTime/Grid Square Indicator 16-3

Figure 16.1 - Rear view of the Skylab SKM53 GPS module .

... '.~""""·-, ·~T

®sl(YLAB
SKM53

ll lll ll \111 Ill l ll l lll ll II l\l \l\llllllllllll\11 Ill\\\
HBLAE-1331 1294

Figure 16.2 - The Skylab SKM53 GPS module.

The NMEA-183 Protocol
The NMEA-183 protocol is an ASCII text based protocol. All messages

start with a $, end with a carriage return/line feed (CR/LF), and contain a
checksum to detect corrupted messages. The SKM53 GPS module supports the
NMEA-183 standard GGA, GLL, GSA, GSV, RMC, VTG, and ZDA messages.
Of these messages, the GGA message contains the majority of the information
we'll be using in our projects. A standard GGA message will look like this:

$GPGGA, 150028.000,3458.8015,N ,09001.3496, W,1,9 ,0.90,93. 7 ,M,-
30.0,M,, *55

This message breaks down into:
$GPGGA - GGA Message Type

16-4 Chapter 16

150028.000 - UTC Time in hhmmss.sss
3458.8015 - Latitude in degrees and minutes ddmm.mmmm
N-North Latitude
09001.3496 - Longitude in degrees and minutes ddmm.mmmm
W - West Longitude
1 - Position Fix Indicator. A "l" indicates the reading is in GPS SPS mode

and the fix is valid
9 - The number of GPS satellites used to determine the position fix
0.90 - The Horizontal Dilution of Precision (HDOP) of the fix
93.7 - Altitude above mean sea level
M - Altitude reading is in meters
-30.0 - The Geoids Separation value (correction for tidal influences)
M - Geoids reading is in meters
*55 - Message Checksum

And the answer to your next question is yes, if you plug these numbers into
your GPS, you will find yourself on top of the work table in my lab, give or
take a few meters. As you can see, there is a lot of valuable information packed
into an NMEA sentence. Fortunately, there is a pair of excellent libraries for
the Arduino that handle the decoding of the GPS messages, without us having
to parse out all that data manually. The Arduino TinyGPS and TinyGPS++
libraries from www.arduiniana.org are outstanding for any sketches needing
to extract data from your GPS module. For this project, we will be using the
TinyGPS library.

To kick things up a notch, we'll also be using the Ernie 2 text-to-speech
module we used in the last project to have our GPS project speak the time and
our current Maidenhead grid locator. This can come in real handy for those
times you're operating mobile and don't want to take your eyes off the road.

Figure 16.3 shows the block diagram for the Talking GPS/UTC Clock and
Grid Square Indicator. For this project, we'll have the Arduino read the GPS,

GPS
Module

ARRL 1126

Nokia
5110

LCD Display

Arduino Uno Emic2
Text To Speech

Module

Speaker

Figure 16.3 - Talking Grid Square Display block diagram.

Talking GPS/UTC Time/Grid Square Indicator 16-5

and then extract the longitude, latitude, date, time, and altitude information.
We'll have the Arduino calculate our grid square and display this on a Nokia
5110 LCD display. We' ll also use the Ernie 2 module to speak the time and grid
square when the audio is enabled.

Now that we know what pieces we'll be using in this project, we'll create
the Fritzing diagram (Figure 16.4), which will show us how to wire everything
up. In this project, we'll be setting up two Software Serial ports, one
for the GPS module, and the other for the Ernie 2. To demonstrate how easy
it is to design and create complex projects for the Arduino, this project needs
only nine wires to connect to the Arduino, not including the power and speaker
connections.

Talking Grid Square Display

0

U4
Nokia 5110 LCD Module

BTl
9V

1N4001
01

Sl

0

0

Rl
470Q

Ernie 2

ARRL1127

U3

GPS Module

Text To Speech Module
U2

LSl

fdtz:.ing

Figure 16.4 - Talking Grid Square Display Fritzing diagram.

16-6 Chapter 16

The Sketch
With everything wired up and ready to go, we can now begin to write the

sketch. Using the flowchart in Figure 16.5, we have all the steps laid out in
the order that we need to do them. As you will see as we get into the sketch,
it really is as easy as the flowchart makes it look. The libraries do most of the
work for us; all we have to do is "glue" the various pieces together. The entire
sketch and libraries can be found in Appendix A and online at www. wSobm.
us/ Arduino.

Starting off with the sketch, you will see that we include a library we
haven't discussed yet. The Arduino ma th. h library is a library of extended
math functions that is included with the Arduino IDE, so all we have to do is
define it to gain access to its features. For this sketch, we need the ability to
calculate the absolute value of a floating variable. The basic Arduino math
functions do not have this ability, so we add that functionality using the
ma th . h library.

#inc lude <math.h> II so we can get absolute va lue of floating point number

Start

Include Libraries
Define Pins and Variables

Define Nokia LCD
Define Text to Speech Serial Port

Define GPS Serial Port

Setup

Setup Digital 1/0 Pins
Initialize Nokia LCD

Initialize Text To Speech Serial Port
Initialize GPS Serial Port
Wait for valid GPS data

Loop

Read GPS
Extract Lat, Long, Time, Altitude

Check Speech Enable Switch
Speak GPS info if enabled

ARRL 1128

Figure 16.5 - Talking Grid Square
Display flowchart.

Talking GPS/UTCTime/Grid Square Indicator 16-7

Next, we'll include the Nokia 5110 library and define the LCD display
object and font:

#include <LCD5110 Basic.h> II Include Nokia 5110 LCD Library

LCD5110 glcd(12,11,10,8,9); II Define the LCD object

extern uint8 t SmallFont[J; II Define the LCD Font

Now, we'll include the Software Serial library for the Ernie 2 and
GPS modules. You will note that the RX pin on the Ernie 2 module and the TX
pin on the GPS module are defined as -1. This tells the library that these pins
will not be active when we initialize the modules later in the sketch. The reason
we don't enable these pins is because the Software Serial library doesn't
like to share time between the two modules. Since we have data coming in from
the GPS constantly, we can't sit in a loop waiting for the Ernie 2 to respond
with its usual":" ready for input prompt after we send it data. We'll have to
assume the Ernie 2 is ready and accepting data as we send it. Again, you could
use an Arduino Leonardo to work around these issues and place one of the two
modules on the Leonardo's hardware serial port, but since we've standardized
on the Arduino Uno for now, we'll do it the hard way. In actual operation, you'll
see that everything comes together and plays well with each other.

II include SoftwareSerial library so we can talk to the Ernie 2 module

#include <SoftwareSerial.h>

II Rx set to -1 (disabled) because we don't want to receive from Ernie 2

#define emic rxPin -1 II Serial input (connects to Ernie 2 SOUT)

#define emic txPin 3 II Serial output (connects to Ernie 2 SIN)

#define audio on 7 II Audio Enable Switch on Pin 7

II set up a new serial port for the Ernie 2

SoftwareSerial emicSerial = SoftwareSerial(emic_rxPin, emic txPin);

#define gps rxPin 5 II Serial input (connects to GPS TxD)

II Set to -1 (disabled) because we don't need to send anything to GPS

#define gps txPin -1 II Serial output (connects to GPS RxD)

Here we include the Tin yG PS . h library, assign the GPS 110 reset pins,
and define the GPS object:

#include <TinyGPS.h> II Include the TinyGPS Library

#define gps reset_pin 4 llGPS Reset control

SoftwareSerial GPS(gps rxPin, gps txPin); II set up a new serial port

TinyGPS gps; II set up a new GPS object

16-8 Chapter 16

Next, we'll declare the gpsdump () , feedgps () , and getgps ()
TinyGPS . h library functions. They are declared here so the setu p () loop
can find and use these functions.

void gpsdump(TinyGPS &gps); II Define the gpsdump function

bool feedgps();

void getGPS();

II Define the feedgps function

II define the getGPS function

And finally, we define all the variables needed in the sketch:

long lat, lon; II long integer for latitude and longitude function

float LAT, LON; II floating integer for latitude and longitude values

int year; II Variable to hold the year value

int gps_altitude; II Variable to hold the altitude value

int gps_tick = 0, gps timeout= 120; II GPS startup timer variables

byte month, day, hour, minute, second; II variables to hold date and time

unsigned long fix age, time, date, chars;

String s date, s time, s_month, s year, s day, s hour, s_minute, s second,

grid_text; II String variables for date, time and grid square

II Variable arrays of characters and numbers for the Grid Square function

char A_Z[27] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

a z[27] = "abcdefghijklmnopqrstuvwxyz";

grid[7];

boolean gps ok; II gps data ok flag

In this sketch we have a lot going on in the setup () loop. First, we'll set
up the Arduino pins used by the Nokia LCD, Ernie 2, and the GPS. We'll also
set up the input pin for the Audio Enable switch and turn on its internal
20 kn pull-up resistor.

II set up the serial IIO pins for the Text to Speech module

pinMode(emic_rxPin, INPUT);

pinMode(emic txPin, OUTPUT);

II set up the serial IIO pins for the GPS module

pinMode(gps rxPin, INPUT);

pinMode(gps txPin, OUTPUT);

II Setup the Audio enable pin as an input

pinMode(audio on, INPUT);

digitalWrite(audio on, HIGH); II enable pullup resistor

Now, we'll initialize the Nokia LCD and the Software Serial ports
for the Ernie 2 and the GPS:

Talking GPS/UTC Time/Grid Square Indicator 16-9

emicSeri a l.beg in(9600); //set the data rate for t h e So f twareSerial port

GPS.begin(96 00); //se t the da t a ra t e for t he Sof t wareSe ri a l port

glcd.InitLCD(); // In i t ia l i ze t he No kia 5110 Displ a y

glcd. se tFont(Sma llFont) ; //Use the small font

II Di s play the Startup screen

glcd. c lrScr ();

glcd.print (" KW5GP" , CENTER , 0);

glcd.print("UTC /GPS", CENTER , 8);

glcd.print("Grid Squa r e ", CENTER , 16) ;

glcd.print("Di s play", CENTER , 24) ;

Next, we'll wait for the GPS to acquire the satellites. The sketch will wait
for up to 2 minutes to acquire a location fix. From a cold start, the SKM53 data
sheet says that the maximum time for a satellite fix from a cold start takes a
maximum of 36 seconds. Indoors in my lab, I have seen the satellite fix take up
to a minute and a half, so the timeout is set for 2 minutes. From a warm restart,
the SKM53 will usually acquire the GPS satellites in 30 seconds or less. The
LCD will display a message indicating that we are acquiring the satellites and
show the timeout timer as it counts down.

II Clea r the LCD d isplay and indicate we are acqui ri ng sate l li t e s
gl c d. clrScr();

glcd.p r int("GPS",CENTER,0);

glcd.pr i nt ("Acqu i ring Sats" , CENTER , 8);

glcd. p rint(" Please Wait ", CENTER , 32);

II retrieves +/ - l at/long in lOOOOOths of a degree

gps.get_p osition (&l at , &l on , &fix age); //Read t he GPS

gps_ok = fal se ;

gps ti c k = 0 ;

II Loop until we s t art ge tting valid GPS messages

while (fix_age Tin yG PS: : GPS I NVALID_AGE & gp s tic k < gp s timeout)

gps. get_posi t ion (&lat , &lon , &fix age); II Read the GPS
getGPS ();

gl cd . p rin t (" No Sat . Fi x", CENTER , 16);

II Di splay the timeout timer

glcd.print ((" "+ St r i ng(gps t i meout - gps tick) +" "), CENTER,40);

delay (l OOO);

gps ti c k+ + ; //Wai t a second and decrement the t i meout t i me r

if (gps tick < gps timeout) // Check to see i f va l id message

II We go t va lid data before timeout , flag the GPS da t a as va l id

gps_ok = t r ue ;

16-10 Chapter 16

In the last portion of the setup () loop, we'll configure and start up the
Ernie 2. Remember, because we're running two Software Serial ports,
we're not checking the Ernie 2 status, assuming everything is okay and it is
accepting data, but we'll add a half-second delay when we send data to the
Ernie 2 to ensure it has time to process the commands.

emicSerial. print('\n '); II Send a CR in case the system is already up

delay(500); II Short delay

emicSerial.println("n6");

delay(500);

II Set voice to Voice 6

emicSerial.print('v'); II Set the volume to +18db

emicSerial.println("18");

delay(500);

emicSerial.print("W"); II Set the speech speed to 200wpm

emicSerial.println("200");

emicSerial.flush(); II Flush the receive buffer

In the main loop () , we start off by checking to see if we have valid GPS
data. If we do, we set up the display template on the Nokia display and read the
GPS.

if (gps ok) II If we have valid GPS data

{

glcd.print("Lat:",0,0); II Set up the Nokia Display with our data template

glcd.print("Lon:",0,8);

glcd.print("Sats:",0,16);

glcd.print("Date:",0,24);

glcd.print("Time:",0, 32);

getGPS(); II Read the GPS

II Read GPS Latitude and Longitude into lon, lat and fix_age variables

gps.get_position(&lat, &lon, &fix_age);

II Read the GPS Data and Time into data, time and fix age variables

gps.get_datetime(&date, &time, &fix_age);

Once we have the GPS data, we'll convert the date and time into strings so
we can format them for the LCD display:

Talking GPS/UTC Time/Grid Square Indicator 16-11

s date= String(date); //convert the date and time to strings

s time = String(time);

if (s time.length() == 7)
{

s time = " O" + s time ;

II Break out the date string into Day/Month/Year

s year= s date.substring(4,6);

s month= s_date.substring(2,4);

s day= s date .substring(0 , 2) ;

II Break out the time string into Hour/Minute/Second

s hour= s time . substring (0 ,2);

s minute

s second

s_time . substring(2 ,4);

s time.substring(4,6);

Next we'll display the latitude, longitude, the number of satellites used
to calculate the position fix, along with the date and time on the LCD. The
LCDS 11 O _Basic. h library has some handy formatting functions when
displaying floating numbers. Here, the glcd. printNumF () library function
is used to select the length, number of decimal places, and the separator
character when it outputs floating type variable data.

II Display the Latitude and North/South

glcd . printNumF(fabs(LAT/1000000),4,30,0,0x2e,7);
if (LAT > 0)

{

glcd . print("N",78,0);

else if (LAT < 0)

glcd.print("S",78,0);

II Display the Longitude and East/West

glcd.printNumF(fabs(LON/1000000) , 4 , 30 , 8 , 0x2e ,7);

if (LON > 0)
{

glcd.print("E",78, 8);

else if (LON < 0)

glcd.print("W",7 8 , 8);

II Display the number of Satellites we're receiving

glcd . printNumI(int(gps.satellites()),36,16,2);

II Display the Date

glcd . p rint (s_month + " /" + s day+ " / "+ s year , 36 ,24);

16-12 Chapter 16

II Display the Time

glcd.print(s_hour + ":" + s_minute + ":" + s second,36,32);

Next, we'll use a function to calculate the Maidenhead grid locator from
the latitude and longitude, and display it along with our altitude. The SKM53
can determine altitude up to 18,000 meters, so even if you do your next Summit
On The Air (SOTA) operation from the Himalayas, you'll still have an accurate
altitude reading.

GridSquare(LAT,LON); II Calulate the Grid Square

glcd.print(grid_ text,0,40); II Display the Grid Square

gps_altitude = int(gps.f_ altitude()); II Read the GPS altitude

glcd.print(String(gps_altitude) + "m ",50,40); II Display the altitude

Finally, we check to see if the Audio Enable switch is turned on and
speak the time and grid square if it is enabled:

if (digitalRead(audio on) LOW) II Only speak if Audio is enabled

emicSerial.print("S"); II Say the Time

emicSerial . print("U TC Time is:");

emicSerial.print(s hour+""+ s_minute);

II Say the Grid Square one letter at a time

emicSerial.print(" Grid Square is:");

for (int x = O; x <= 5; x++)

emicSerial.print(grid_ text[x));

emicSerial . print(" ");

emicSerial . print('\n'); II Send a carriage return to start speaking

If we did not acquire valid GPS data, we'll display that on the LCD and also
speak it if the audio output is enabled:

II We did not get valid GPS before the startup timed out

glcd.clrScr();

glcd . print("NO GPS Data",CENTER,40); II Display No GPS Data message

if (digitalRead(audio on) LOW) II Only speak if Audio is enabled

emicSerial.print("S"); II Say the Time

emicSerial.print("U TC Time is Unknown");

delay(l000);

emicSerial . print("Grid Square is Unknown");

emicSerial.print('\n') ; II Send a carriage return to start speaking

Talking GPS/UTC Time/Grid Square Indicator 16-13

There are three interrelated functions the Tin yG PS . h library uses
to acquire and parse the GPS data, getGPS () , feedgps () , and
gpsdump () . The getGPS () function checks the GPS data stream every
second. If it is new data, it uses the feedgps () function to build the NMEA
sentence used to extract the GPS information for the sketch. The gpsdump ()
function updates the latitude and longitude variables when new GPS data is
received.

void getGPS() II Function to get new GPS data every second

{

bool newdata = false;

unsigned long start= millis();

II Every 1 second we print an update

while (millis() - start < 1000)

if (feedgps ())

{

newdata = true;

if (newdata)

gpsdump(gps);

bool feedgps() II Read the GPS data

while (GPS.available())

if (gps.encode(GPS.read()))

return true;

return 0;

void gpsdump(TinyGPS &gps) II Get the Latitude and Longitude

gps.get_position(&lat, &l on);

LAT lat;

LON = lon;

II If we don't feed the GPS during this long routine,

II we may drop characters and get checksum errors

feedgps ();

16-14 Chapter 16

Lastly, we have the GridSquare () function used to calculate our
Maidenhead grid locator:

II Calculate the Grid Square from the latitude and longitude

void GridSquare(float latitude,float longtitude)

II Maidenhead Grid Square Calculation

II Set up the function variables

float lat_O,lat_l, long_O, long_l, lat_2, long_2, lat_3, long_3,calc_long;

float calc_lat, calc_long_2, calc lat 2 , calc_long_3, calc lat 3;

lat 0 = latitudellOOOOOO;

long_O = longtitudellOOOOOO;

grid_text = " ";

int grid_long 1, grid_lat_l , grid_long_2, grid_lat_2;

int grid_long_3, grid_lat 3;

II Begin calculating the Grid Square

II Calculate the first 2 characters of the Grid Square

II move the longitude reference point to the anti-meridian

calc long= (long_O + 180);

II move the latitude reference point to the South Pole

calc lat= (lat_O + 90);

long_l = calc_longl20 ; II Break the longitude into 20 degree segments

lat 1 = (lat 0 + 90)110; II Break the latitude down into 10 degree segments

II Remove the fractional portion of the results

grid_lat 1 = int(lat 1);

grid_long 1 = int(long 1);

II Calculate the next 2 digits of the Gr i d Square

II Break the Field into 20 degree by 10 degree segments

calc_long_2 = (long_0+180) - (grid_long_l * 20);

long_2 = calc_long_2 I 2 ;

lat 2 = (lat 0 + 90) - (grid_lat 1 * 10);

II Remove the fractional portion of the results

grid_long 2 = int(long_2);

grid_lat_2 = int(lat 2);

II Calculate the last 2 characters of the Grid Square

calc_long 3 = calc long_2 - (grid_long_2 * 2);

long 3 = calc long_3 I . 083333 ;

grid_long 3 = int(long_3);

lat 3 = (lat 2 - int (lat 2)) I . 0416665;

grid_lat 3 int(lat_3);

II Here's the first 2 characters of Grid Square - place into ar ray

II We use the array index to the AZ array to insert the ASCII value

II into the grid[) array

grid[O] A_Z[grid_long_l);

grid[l) = A_Z[grid_lat 1);

II The second set of the grid square

grid[2) (grid_long_2 + 48) ;

grid[3) = (grid_lat 2 + 48) ;

II The final 2 characters

II We use the array index to the a z array to insert the ASCII value

II into the grid[) ar r ay

grid[4) =a z[grid_long 3) ;

grid[5) a z [grid_lat 3) ;

II return the 6 character grid[) array as a String variabl e

grid_text = grid;

return;

16-16

Once the project was fully debugged and operational on the breadboard, the
protoshield, consisting mainly of connectors for the Nokia display,
Ernie 2 and GPS modules, Audio Enable switch, and speaker connections
was constructed using the schematic in Figure 16.6, and the finished assembly
mounted into a Solarbotics Mega S.A.F.E. enclosure.

Enhancement Ideas
This is one project I would really love to downsize with an Arduino Nano

to fit inside an Altoids mint tin, turning it into a true shirt-pocket GPS and grid
square display. It will be a tight fit, but I think it can be done. You could also
upgrade to the TinyGPS++ library, which allows you to extract data from
anywhere within the NMEA sentences, allowing you much more flexibility
with the data you have available to display. You could also add code to provide
course and velocity output, as well as adding in "course to" code so you can use
the GPS as a navigational aid. This project turned out to be a lot of fun to design
and construct, and I can see a great many uses for it in the future .

Chapter 16

U4 Nokia 5110

:J ~ () w ~ u~ 0 +3.3 v
SCL u Cl z

oooocr: > :.J Cl
SDA 5 4 3 2 1 6 7 8

AREF

GND R1

RESERVED D13

IOREF D12
)>

RESET , D11
a. +5V

3V s:: D10

5V D9 vcc
GND2 :l c DB GND

U3
0

GND1 c Speech Enable NC Skylab
:l 4

VIN 0 D7 RST SKM53 GPS 5
:::0 D6 RXD Module

~r
6

AO LLJ D5 TXD

A1 D4

1N4001 D1 A2 D3 +5V
A3 D2

GND

J_ A4/SDA D1
5V

U2
A5/SCL DO 3 SOUT 9V -=-BT1 EMIC2

4

-J, SIN Text to Speech 5 SP+ Module

I
6 SP-

LS1

ARRL1 129

Figure 16.6 -Talking Grid Square Display schematic diagram.

BT1 - 9 V battery. U1 - Arduino Uno.
D1 - 1 N4001 diode or equivalent. U2 - Ernie 2 text-to-speech module.
LS1 - 8 n mini speaker. U3 - Skylab SKM53 GPS module.
R1 - 470 n, Ys W resistor. U4 - Nokia 5110 LCD display module.
S1, S2 - SPST toggle switch.

References
American Radio Relay League - www.arrl.org/digital-modes
Arduiniana - www.arduiniana.org
Arduino - www.arduino.cc
Grand Idea Studio - www.grandideastudio.com
Henning Karlsen - www.henningkarlsen.com/electronics/
Parallax - www.parallax.com
Skylab Technology Company - www.skylab.com.cn
SparkFun Electronics - www.sparkfun.com
Solarbotics - www.solarbotics.com
Summits on the Air - www.sota.org.uk
TEN-TEC - www.tentec.com

Talking GPS/UTC Time/Grid Square Indicator 16-17

r
i

CHAPTER17

Iambic Keyer

---- ----

The finished Iambic Keyer mounted in a Solarbotics Arduino Mega
S.A.F.E.

It really can't be said enough: the Open Source world is a wonderful place.
It's like having a whole Internet full of developers working side by side with
you and sharing everything they do. When you start out working with a new
module or project, take some time to look for similar projects and ideas on
the Internet. While you may not find exactly what you have in mind for your
project, there's a good chance you can find someone who has been where you
are now and has a similar project you can adapt or that can help you on your
way.

Such is the case with the Iambic Keyer project. Electronic CW keyers have
been around for decades, using technologies ranging from vacuum tubes to
microprocessors. I remember way back when the Curtis keyer chips were hot
off the press, and I built my first electronic keyer with the Curtis 8044 chip
in 1977. Naturally, I had to build an electronic keyer project for the Arduino.
Having been away from the CW world for a while, before I started out with this
project, I did some searching on the Internet to see how far keyers have come
since my last keyer project.

Iambic Keyer 17-1

Iambic Keying
Iambic keying - where the keyer sends alternating dits and dahs when both

paddle levers are squeezed, starting with whichever paddle was squeezed first
- was a new concept to me when I built my first keyer way back then. Now
I've discovered there are not one, but two iambic modes these days. Naturally,
this project would have to support both.

Iambic Mode A is derived from the original Curtis Keyer chips. In Iambic
Mode A, alternating dits and dahs are sent as long as both paddles are squeezed.
When the paddles are released, the keyer completes sending the current dit or
dah and then stops, waiting for the next swipe of the paddles.

In Iambic Mode B, alternating dits and dahs are sent as long as both paddles
are squeezed, but when the paddles are released, the keyer will complete the
current dit or dah, then send the opposite code element before it stops sending.

The choice of iambic modes is purely a matter of personal preference and
largely depends on which mode you learned when you got started with an
electronic keyer. My advice is to experiment with both modes to see which one
you like best.

Keyer Design
Now that I had a good idea of what I was going to do, the next step was

to figure out how to do it. Turning to the Open Source community, I did some
searching and came across a nice little keyer project for the Arduino that, with
minor adaptation, would be perfect for the task. "The Arduino Iambic Keyer"
by Steven T. Elliott, KlEL (see the References) had almost everything I wanted
in my Iambic Keyer project for the Arduino; it just needed a few things added
to make it into exactly what I had in mind. Rather than reinvent the whole
wheel, now all I have to do is add my features to the nice foundation Steve has
provided. This is the power of the Open Source community and I thank Steve
for allowing me to adapt his work into this project.

Key Q T
Paddles

In

Mode _ ./_
Switch ~ (---~

In

Potentiometer -----11._

Nokia
5110

LCD Display

Arduino Uno

Speed ~

In "-:::==============~

Figure 17.1 - Iambic Keyer block diagram.

17-2 Chapter 17

ARRL11 30

,..._.. _ ___.._..., Keying

Relay
Out

LED
Out

Sidetone
Out

ARRL1131

J1

U1

BT1
9V

Starting out, we'll create our block diagram (Figure 17.1) to determine the
basic functions in our keyer. We'll be using a SPDT center-off switch to choose
the keyer mode. In one direction the switch will select Iambic Mode A, and in
the other direction it will select Iambic Mode B. The center-off position will
allow us to use either paddle as a straight key. We'll also add a potentiometer to
adjust the keying speed. For this project, we'll have the keying speed variable
between 5 and 35 WPM. For outputs, we'll have our keyer send a tone to the
speaker or key a relay to drive a rig. We'll also have an LED to indicate when
the keyer is sending. Lastly, we'll use a Nokia 5110 LCD to display mode and
speed settings.

As you can see from the Fritzing diagram in Figure 17.2, we have quite
a few external components on this project, and we'll be using most of the
Arduino Uno's digital I/O pins, as well as one of the analog pins. Even with the
number of external components, wiring this project up on the breadboard should
not take much time at all.

DS1

Key Oo I
R2 L

4700

0

~ 1N4001

' 01

--- JJ.!. S1

... Power

0 U2
Nokia 5110

LCD Module

S2
Mode Switch

R1
1k0

LS1
Sidetone

Figure 17.2- Iambic Keyer Fritzing diagram.

Iambic Keyer 17-3

The Sketch
Once you have everything in place, we're ready to start creating the sketch.

Using the flowchart in Figure 17.3 you can see that the coding required for this
project will be slightly more involved that most of the coding we have done to
this point. Using Steve Elliott's Iambic Keyer sketch as the core for this project,
all we have to do is add in our external components, so it's really not as difficult
as it looks.

Starting out with the sketch, we'll include the library for the Nokia 5110
display and define our constants and variables. The complete sketch can be
found in Appendix A and online at www.wSobm.us/ Arduino.

#include <LCD5110 Basic.h> II Nokia 5110 LCD

LCD5110 glcd(l2,ll,10,8,9);

extern uint8 t SmallFont[];

#define ST Pin 4 II Sidetone Output Pin on Pin

#define LP in 7 II Left Paddle Input on Pin 7

#define RP in 5 II Right Paddle Input on Pin

#define led Pin 13 II LED on Pin 13

#define Mode A Pin 3 II Mode Select Switch Side A

#define Mode B Pin 2 II Mode Select Switch Side B

#define key_ Pin 6 II Transmitter Relay Key Pin

#define Speed_Pin 0 II Speed Control Pot on AO

#define ST Freq 600 II Set the Sidetone Frequency

int key speed; II - variable for keying speed

int read _speed; II variable for speed pot

int key_mode; II variable for keying mode

int last_mode; II variable to detect keying

4

5

to 600 Hz

mode change

unsigned l ong ditTime; II Number of milliseconds per dit

char keyerControl;

char keyerState;

St ring textl, tex t2, text3, tex t4, texts, text6

static long kt imer;

int debounce;

17-4 Chapter 17

" "; II LCD text variables

Start

Include Libraries
Define Pins and Variables

Define Nokia LCD

Setup

Setup Digital 1/0 Pins
Initialize Nokia LCD

Set Starting Key Speed

Loop

Read Speed Potentiometer
Read Mode Switch

Set Mode and Key Speed
if changed

No

No

Iambic Mode B
Paddle Keying

Send Opposite code
element when

paddle released

Yes

Figure 17 .3 - Iambic Keyer flowchart.

Straight Key from
Either Paddle

Iambic Mode A
Paddle Keying
Complete code
element when

paddle released

ARRL11 32

Iambic Keyer 17-5

The Iambic Keyer primary functions are all managed and controlled through
the use of a single byte variable to keep track all the various conditions. A
single bit is used, rather than an entire integer variable for each condition. This
is an excellent way to conserve memory, especially with sketches that push
memory usage to the limits and you're looking for every last byte of memory
you can possibly conserve.

II keyerControl bit definitions

II
#define

#define

#define

#define

#define

#define

#define

DIT L OxOl II Dit latch

DAH L Ox02 II Dah lat c h

DIT PROC Ox04 II Dit is being processed

PDLSWAP Ox OS II 0 for normal, 1 for swap

IAMBI CB OxlO II 0 for Iambic A, 1 for Iambic B

ULTIMATIC Ox20 II 1 for ultimati c

STRAIGHT Ox80 II 1 for straight key mode

In his Iambic Keyer sketch, Steve Elliott introduces the en um datatype,
which allows you to use enumerated values to represent the various
conditions the variable can contain. This datatype allows you to assign an
easily understandable alias to a condition that can be used in other Arduino
statements, such as within swi tch ... case () decision blocks within your
sketch. For example, it's a whole lot easier to read and understand case
IDLE. .. do this, than it is to understand case l ... do this.

II State Machine Defines

enum KSTYPE {IDLE, CHK_DIT, CHK_DAH, KEYED_PREP, KEYED, INTER_ELEMENT } ;

In the setup () loop, we start out by defining all of the digital 1/0 pin
modes we'll need to use to interface with all the external pieces we have on the
breadboard. You will see how much more readable all this setup is by defining
the pins with an understandable name. This also allows you to easily switch
your pins around if you would prefer to connect the external components to
different pins, or you make a wiring error and would rather change the pin
assignments than rewire your circuit.

pinMode(led_Pin, OUTPUT); II sets the LED digital pin as output

pinMode(LP_in, INPUT); II sets Left Paddle digital pin as input
pinMode(RP_in, INPUT); II sets Right Paddle digital pin as input

pinMode(ST_Pin, OUTPUT); II Sets the Sidetone digital pin as output
pinMode(key_Pin, OUTPUT); II Sets the Keying Relay pin as output
pinMode(Mode_A_Pin, INPUT); II sets Iambic Mode Switch Side A as input

pinMode(Mode_B_Pin, INPUT); II sets Iambic Mode Switch Side B as input

digitalWrite(led_Pin, LOW) ; II turn the LED off

digitalWrite(LP_in, HIGH); II Enable pull up on Left Paddle Input Pin
digitalWrite(RP_in, HIGH); II Enable pull up on Right Paddle Input Pin
digitalWrite(Mode_A_Pin, HIGH); II Enable pull up on Mode Switch Side A

digitalWrite(Mode_B_Pin, HIGH); II Enable pull up on Mode Switch Side B

17-6 Chapter 17

Next, we'll initialize the Nokia 5110 LCD and output a startup message.
With this sketch, you'll see that we have assigned a string variable for each line
of text on the LCD display and use a function to update the display. This will
allow us to update multiple lines on the display simultaneously without having
to print to every line of the LCD every time we want to update the display.

glcd .In i t LCD(60);

gl cd .se t Font(SmallFont);

cleartext ();

text l

text2

text3

"KWSGP";

"I a mbic";

" Keyer";

text6 " Initial izing";

update l cd ();

de l ay (3000);

In the next part of the set up () loop, we initialize the keyer state machine
and the control byte. We also read the SPEED potentiometer and map the analog
voltage input from the SPEED potentiometer to a value between 5 and 35 WPM.
We then call the loadWPM () function to set the keyer speed to the value read
from the SPEED potentiometer.

keyerState = I DLE;

keyerContro l = O;

II Read t he p otentiometer to determine code speed

key_speed = map (ana l ogRead (Speed_Pin),1 0 ,10 00,5, 35);

l oadWPM(key_ s p e ed) ; II Set the ke ying speed

In the final section of the set up () loop, we clear and display the starting
status of the keyer on the Nokia display:

c l eart ext ();

textl "Keyer Re a d y";

t ext3 = "Mode : Iambi c - A";

texts = St ring (key_speed) + " wpm";

up date l cd ();

In the main loop () , the first thing we do is read the current setting on the
SPEED potentiometer and update the keyer sending speed and the speed display
on the LCD if the speed has changed.

Iambic Keyer 17-7

II Read the potentiometer to determine code speed

read_ speed = map(analogRead(Speed_Pin),10,1 000,5,35);

II If the Speed Pot has changed, update the speed and LCD

if (key_ speed != read_speed)

{

key_ speed = read_speed;

loadWPM(key_speed);

texts = String(key_speed) + "wpm";

updatelcd();

Next we check to see if the keying mode has been changed and update the
LCD display only if the mode has changed:

II Read the Mode Switch and set mode

II
II Key Mode 0 Iambic Mode A

II Key Mode l Iambic Mode B

II Key Mode 2 Straight Key

II

if (digitalRead(Mode_A_Pin) LOW) II Set Iambic Mode A

key_mode = 0;

text3 = "Mode: Iambic-A";

if (digitalRead(Mode B Pin) LOW) II Set Iambic Mode B

key _mode = l;

text3 = "Mode: Iambic- B";

II Set Straight Key if Mode switch in Center-Off position

if (digitalRead(Mode_A_Pin) == HIGH && digitalRead(Mode_B_Pin)

key_mode = 2;

text3 = "Mode: Straight";

II Update the LCD and save the new mode only if it has changed

i f (key_mode != last_mode)

last_ mode = key_mode;

updatelcd();

17-8 Chapter 17

HIGH)

Next, we check to see if we are in straight key mode or iambic keying mode.
If we're in straight key mode, we just use either paddle as a keying input, turn
on the LED, key the keying relay, and play the sidetone as the paddles are
pressed.

if (key_mode == 2) II Straight Key

II Straight Key Mode

i f ((digitalRead(LP_ in) ==LOW) I I (digita l Read(RP_ in)

II Key from either paddle

digitalWrite(led_Pin, HIGH);

digitalWrite(key_Pin, HIGH);

tone(ST_Pin, 600);

else {

digitalWrite(led_Pin, LOW);

digitalWrite(key_Pin, LOW);

noTone(ST_Pin);

LOW))

Here is where Steve Elliott's keyer code comes into play. Using a switch ...
case () statement, we check the various conditions of the state machine and
set the keyerControl variable's bits accordingly.

II Basic Iambic Keyer

I I keyerControl contains processing flags and keyer mode bits

II Supports Iambic A and B

II State machine based, uses calls to millis() for timing.

switch (keyerState)

case IDLE: II Wait for direct or latched paddle press

II check to see if a paddle is pressed or keyControl bits DIT Lor

II DAH 1 (dit or dah latch) are set

if ((digitalRead(LP in) ==LOW) I I (digitalRead(RP in) == LOW) I I

(keyerControl & Ox03))

{

update PaddleLatch(); II set the paddle latch bits DIT_L or DAHL

keyerState = CHK DIT; II Tell state machine to check for a dit nex t

break; II Exit the case() loop

Iambic Keyer 17-9

case CHK DIT: II See if the dit paddle was pressed

if (keyerControl & DIT L)

keyerControl I= DIT_PROC; II set the DIT PROC bit in keyerControl

ktimer = ditTime; II set the keying timer to the ditTime

keyerState KEYED PREP; II tell the state machine we're ready to key

else {

keyerState CHK DAH; II otherwise, do a CHK DAH next time

break;

case CHK DAH: II See if dah paddle was pressed

if (keyerControl & DAH L)

ktimer = ditTime*3; II set the key time to 3 times the ditTime

keyerState KEYED PREP; II tell the state machine we're ready to key

else {

keyerState IDLE; II no key is pressed, return to IDLE state

break;

Next we check for the keying portions of the state machine:

case KEYED PREP:

II Assert key down, start timing,

digitalWrite(led_Pin, HIGH);

tone(ST Pin, ST Freq);

digitalWrite(key_Pin, HIGH);

ktimer += millis();

keyerControl &= -(DIT L +DAHL);

keyerState = KEYED;

break;

state shared for dit or dah

II Turn the LED on

II Turn the Sidetone on

II Key the TX Relay

II set ktimer to interval end time

II clear both paddle latch bits

II next state

case KEYED: II Wait for timer to expire

if (millis() > ktimer) II are we at end of key down?

digitalWrite(led_ Pin, LOW); II Turn the LED off
noTone(ST Pin); II Turn the Sidetone off -
digitalWrite(key Pin, LOW); II Turn the TX Relay off -
ktimer = mill is () + ditTime; II inter- element time
keyerState = INTER ELEMENT; II next state

else if (key_mode == 1) II Check to see if we're in Iambic B Mode

update PaddleLatch(); II early paddle latch in Iambic B mode

break;

17-10 Chapter 17

The last state of the state machine is to set the inter-element spacing
between the code elements:

case INTER ELEMENT: II Insert time between ditsldahs

update PaddleLatch(); II latch paddle state

if (millis() > ktimer) II are we at end of inter- space ?

if (keyerControl & DIT PROC) II was it a dit or dah ? -
{

keyerControl &= -(DIT_L + DIT PROC); II clear two bits

keyerState = CHK DAH; II dit done, check for dah

else {

keyerControl &= -(DAH L); II clear dah latch

keyerState = IDLE; II go idle

break;

The Functions
There are four functions used in this sketch. The first, update

PaddleLatch (), is used to update the status of the keyerControl byte
when a paddle is pressed:

void update PaddleLatch()

if (digitalRead(RP_in) == LOW)

keyerControl I= DIT_L;

if (digitalRead(LP_in) == LOW)

keyerControl I= DAH L;

II set the DIT L bit if right paddle

II set the DAHL bit if left paddle

The loadWPM () function calculates the desired dit timing from the
selected words per minute:

void loadWPM (int wpm)

ditTime = 1200lwpm;

Iambic Keyer 17-11

void updatelcd()

The last two functions handle the output to the Nokia 5110 LCD. The
update led () function will take the contents of the six text variables and
output them on each line of the Nokia display. The c l eartext () function
will erase the display and reset the text variables.

II clears LCD display and writes the LCD data

glcd.clrScr();

glcd.print(textl,CENTER,0); II Line 0

g l cd.print(text2,CENTER,8); II Line 1

glcd.print(text3,CENTER, 16); II Line 2

glcd.print(text4,CENTER,24); II Line 3

glcd.print(textS,CENTER,32); II Line 4

g l cd.print(text6,CENTER,40); II Line 5

void cleartext() II clears the text data

textl

text2

text3

text4

text3

text4

texts

text6

17-12

" " . I

textl;

textl;

textl;

textl;

textl;

textl;

textl;

As you can see, there is a lot going on inside the iambic keyer portion of
the sketch, but because Steve had already done this part of the sketch, we saved
a lot of time and effort by utilizing his sketch as a foundation and wrapping
our modifications around it. This is part of the fun of the Arduino and Open
Source; you're rarely totally alone and as this sketch proves, there's most likely
someone out there doing something similar to what you're wanting to do and
sharing their work to help you with your project.

Once you have everything working on the breadboard, you can use the
schematic in Figure 17.4 to build your keyer on an Arduino protoshield and
mount the finished project into a Solarbotics Mega S.A.F.E. enclosure.

Enhancement Ideas
Between Steve Elliott's keyer sketch and my enhancements, there's really

not much more I can think of adding to this project. The one idea that does
come to mind is to shrink the project down using an Arduino Nano, rearranging
the controls, fitting everything into a single-height enclosure, and mounting
your keyer paddles on top, turning it into a self-contained portable keyer for that
next Field Day or other portable operating event.

Chapter 17

+3.3V

J1

Right Paddle 1

Gnd
2

Left Paddle
3

U2 Nokia 5110

J2
Cl :c :J ~ u w ti 2~ """"' z u

Ol u CJ ::::; > UClClUO:::

8 7 6 5 4 3 2 1 1 Out

R3
D2

1N4001 L __ J Keying Relay

~
R2

DS1 4700

~ < ~ Q M N """" 0 m 00 o a w z ~ ~ """" """" o c cncna:::CJoooo
<(

U1
Arduino Uno R3

<(-'
Cl u

0 """" N ~ ~ ~
<(<(<(<(<(<(

+5V

R1
'----+<SPEED

1 kO

MODE

LS1

ARRL 1133

Figure 17.4- Iambic Keyer schematic diagram.

BT1 - 9 V battery.
D1, D2 - 1 N4001 diode or equivalent.
D51 - 5 mm LED.
J1 - Three conductor jumper header or builder's

choice of jack.
J2 - Two conductor jumper header or builder's

choice of jack.
K1 - 5P5T 5 V DIP reed relay.

L51 - 8 n mini speaker.
R1 - 1 kn potentiometer.
R2, R3 - 470 n, Ye W resistor.
51 - 5P5T toggle switch.
52 - DP5T center-off toggle switch.
U1 - Arduino Uno.
U2- Nokia 5110 LCD display module.

Iambic Keyer 17-13

17-14

References

Chapter 17

Henning Karlsen - www.henningkarlsen.com/electronics/
Solarbotics - www.solarbotics.com
S. Elliott, KlEL, "Arduino Iambic Keyer," www.openqrp.org/?p=343

CHAPTER18

Waveform Generator

0

The finished Waveform Generator mounted in a
SparkFun pcDuino/Arduino enclosure.

A waveform generator is another tool that's handy to have around. If
you're going to troubleshoot or work with audio circuits, it's always nice to
have a stable and clean audio source available. Since I can't whistle, I'm pretty
much out of luck when it comes to testing audio circuits without something to
generate the audio for me.

This is one of those projects that kept evolving as I worked with it on the
breadboard. Had I just soldered up the original design, I would have spent more
time soldering (and desoldering) than I would have spent actually building
the project. This is a perfect example of why building and testing your initial
designs on a breadboard is the preferred way to go.

My initial design criteria called for a waveform generator that could
generate a sine, square, and triangle wave from 1 Hz to 10 kHz or better. Since

Waveform Generator 18-1

the Arduino can only generate square waves on the digital 1/0 pins, and has
no digital-to-analog converter onboard, I would have to come up with a way to
generate the waveforms externally. That sounded simple enough in theory, as I
had already found numerous circuits that could do this with the Arduino online
in the Arduino Playground.

Resistor-to-Resistor Ladder Network
The simplest design (Figure 18.1) called for a series of resistors connected

to the Arduino's digital 1/0 pins that would create what as is known as a
"resistor-to-resistor ladder network" (R2R) digital-to-analog (D/A) converter.
This design uses a series of resistors connected across eight digital 1/0 pins on
the Arduino to generate the analog output. In effect, this creates an 8-bit digital
to-analog converter, and the Arduino would be used to generate the actual
waveforms by using eight digital 1/0 pins as the input to the R2R DI A network.

The test sketch for this was simple, and there were plenty of example
sketches using a table stored in flash memory to generate the sine wave. To
generate a triangle wave, all I had to do was increment and decrement the data
sent to the digital 1/0 pins. Sounds easy enough, right?

Well, at 200 Hz, everything was perfect as shown in Figure 18.2. However,
as the frequency went up, the waveform started to distort. At 6 kHz (Figure
18.3), there was a noticeable stair-stepping to the waveform, and at 13 kHz
(Figure 18.4), the sine wave was seriously distorted. At 27 kHz, the sine wave

20 kQ
8 bit Digital to

Bit7 Analog Output

10 kQ
20 kQ

Bit6

10 kQ
20 kQ

Bit5

10kQ
20 kQ

Bit4

Digital 1/0 Pins 10 kn
from Arduino 20 kQ

Bit3

10 kQ
20 kQ

Bit2

10 kQ
20kQ

Bit 1

10 kQ
20 kQ

BitO

10 kQ

ARRL 1134

Figure 18.1 - Resistor ladder digital-to-analog
converter schematic diagram.

18-2 Chapter 18

Figure 18.2 - The resistor ladder
digital-to-analog converter output at
200 Hz. It doesn't look bad at all here.

Figure 18.4 - The resistor ladder
digital-to-analog converter output
at 13 kHz. You can see where the
waveform is getting badly distorted
with noticeable stairstepping.

Figure 18.3 - The resistor ladder
digital-to-analog converter output
at 6 kHz. You can see where the
waveform is starting to show
stairstepping.

Figure 18.5 - The resistor ladder
digital-to-analog converter output
at 27 kHz. The waveform is so badly
distorted now that we can't really tell
if it's a sine or a square wave.

was so distorted that it was more like a bad square wave than a sine wave as
seen in Figure 18.5. It was the same way with a triangle wave, except the
distortion was very noticeable at 8 kHz, and at 12.5 kHz the triangle wave
was distorted to where it began to look more like a very bad sine wave than a
triangle wave.

I tried multiple versions of the sketch and did all that I could think of to
optimize the waveforms, including direct calculation of the sine wave rather
than using a pre-defined table. The results were every bit as bad, if not worse.
Even using the Arduino's digital I/O port register I/O method that outputs to
eight digital I/O pins with a single digi talWri te () didn't improve things
very much. It was pretty obvious that for any frequency above 800 Hz, this
design wasn't going to provide a clean, stable waveform unless I moved up to
a faster Arduino such as the Due. I felt that was a bit too big of a step for what
should be a simple waveform generator project, so it was time to fall back and
regroup.

Waveform Generator 18-3

Microchip MCP4725 12C 12-bit D/A Module

Figure 18.6 -The Microchip MCP4725
12-bit 12C digital-to-analog converter
module.

The next design called for replacing the resistor ladder
DIA with a Microchip MCP4725 FC 12-bit DIA module
(Figure 18.6). My thinking was that the MCP4725 DIA
would provide four additional bits of resolution and would
offload some work from the Arduino since the MCP4725
uses the FC bus for communication. Some quick rewiring
on the breadboard and the new design was ready to test. As
it turned out, the waveforms were slightly less distorted, but
the Arduino and MCP4725 couldn't generate the waveforms
fast enough to produce anything usable above 800 Hz. It was
fairly obvious that this design wasn't going to cut it either.

Things were not looking good for the Waveform
Generator project at this point. I had exhausted all of the
traditional ways to generate waveforms with the Arduino,
and there was only one design idea left to try.

Analog Devices AD9833
Programmable Waveform Generator

I had recently begun to experiment with the direct digital
frequency synthesis (DDS) modules as part of the TEN-TEC

Rebel Model 506 JT65 project, as well as working on some ideas for a DDS
based antenna analyzer, so I had a few different DDS modules lying around the
lab. I had been avoiding them after skimming the datasheet because it seemed
they were quite complex, and I just hadn't taken the time to dig into them yet.
Now was as good a time as any, so I dug back into the datasheets to see if I
could use a DDS module for this project. I settled on trying to use the Analog
Devices AD9833 programmable waveform generator module (Figure 18.7). The
reason that I chose the AD9833 was that of all the DDS modules available at a
reasonable price, the AD9833 was one of the few that would directly generate
triangle waves in addition to the standard sine and square wave outputs of the
other DDS modules.

Direct digital frequency synthesis is a relatively new technology that
is rapidly finding its way into circuit designs that call for generating high
quality varying frequency signals. Using a reference clock, a DDS can be used
to generate very precise and stable signals that can be used as a VFO for a
transmitter or as a receiver IF mixer signal input, for example.

What makes the DDS modules so appealing is that they use a standard SPI
bus interface for communication with the Arduino or other microcontrollers.
Controlling the Analog Devices DDS modules uses the same basic internal
register format among the various DDS modules, so once you get one DDS
design working, you can switch among the various DDS modules rather easily.
The major difference among the Analog Devices DDS modules is their upper
frequency limit, number of bits in the frequency and phase control registers, and
the types of waveforms they can generate.

The TEN-TEC Rebel transceiver uses an AD9834 to generate the
transmitted CW signal and the receiver IF mixing signal. The AD9834 can

18-4 Chapter 18

Figure 18.7-The Analog Devices AD9833 waveform
generator module.

generate clean and stable waveforms up to 37 .5 MHz, perfect for use in amateur
HF transmitter or receiver designs. The AD9850 can generate signals up to
62.5 MHz and the AD9851 can generate signals up to 90 MHz. However, since
the AD9834, AD9850 and AD9851 don't generate triangle waves, and this
project's initial design called for generating sine, square, and triangle waves,
with no requirement for generating waveforms higher than 20 kHz, the AD9833
seemed to be the best candidate for the job.

The Analog Devices AD9833 is a digitally programmable waveform
generator, capable of generating sine, square, and triangle waveforms from 0 to
12.5 MHz. It has dual 28-bit frequency registers and can achieve a resolution
of 0.1 Hz with a 25 MHz reference clock rate. Even higher resolutions can be
achieved by using a lower frequency for the reference clock. The AD9833 also
has two 12-bit phase registers, allowing the phase of the output signal to be
shifted from 0 to 720° (0- 2n). The AD9833 uses a 10-bit DIA converter to
generate the output waveform. Sine waves are generated using an on-chip sine
wave lookup table in internal read-only memory (ROM), requiring no external
calculations to generate smooth, 10-bit sine waves across the entire frequency
range. The output signal from the AD9833 is approximately 0.6 V peak-to
peak.

The AD9833 is controlled through a single 16-bit multi-function control
resister. The upper two bits of the control register are used to determine if the
command is a control command, frequency register 0 or 1 command, or a phase
register command. Since the frequency registers are 28 bits each, two 16-bit
writes are required to load the frequency registers. Command register options
allow you to control how the frequency registers are loaded, giving you a
number of options for frequency control and selection.

Waveform Generator 18-5

For me, the most difficult part of understanding the AD9833 was with
the way the various commands are implemented. Once I realized that all
communication with the AD9833 is through the single 16-bit control register
with different upper bit settings to select the actual register desired, the rest
came fairly easily. To calculate the desired output frequency, the simple formula
of fout = (frefci/228

) x FreqRegister is all that is needed. We can have the Arduino
do the complex math for us, so all we have to do is set up a function to convert
the desired frequency into the value needed for the frequency register.

Final Design
Finally, we have a circuit that looks like it can do what our design calls

for. Using the block diagram (Figure 18.8), we'll use an AD9833 to generate
the waveforms, an SPDT center-off switch to select among sine, square, and
triangle waves, and a 1 kQ potentiometer to control the output frequency. We'll
use an LM386 audio amplifier chip to boost the output of the DDS module to
provide an output signal strong enough to drive a speaker. We'll also have a
potentiometer on the LM386 to control the output level.

Now that we finally have all the pieces in the right order, we can create our
prototype circuit using the Fritzing diagram in Figure 18.9. In spite of all the
difficulties determining the best way to build this circuit, the actual hardware
involves only a handful of wires and external components. We'll have the
AD9833 attached to the Arduino's SPI bus and the 16-character by 2-line LCD
display connected to the FC bus.

ARRL1135

AD9833
DDS

Module

Square if(

16x2 r2c LCD

Arduino Uno

SPOT Switch _ _/__
Off= Sine Triangle~ c~----'

Frequency

Figure 18.8 - Waveform Generator block diagram.

18-6 Chapter 18

Speaker

Output 1.------1._ Signal
Amplifier Out

Waveform Generator

U2 R2

i c1
,., 10µF

Figure 18.9
-Waveform
Generator
Fritzing diagram.

AD9833 10k0

-""l
11

U3 • ii
LM386

BT1 9V

Start

Include Libraries
Define Pins and Variables

Define LCD

Setup

Setup Digital 1/0 Pins
Initialize LCD
Initialize DDS

Loop

Read Sine/Square/Triangle Switch
Read Frequency Potentiometer
Set DDS Frequency/Wave Type

ARRL 1137

-
S2
Waveform Select U4

16x2 LCD

..
S1 ARRL 1136

The Sketch
Figure 18.10 shows the flowchart we will use to design

our sketch. After initialization and setup, the sketch will read
the sine/square/triangle WAVEFORM SELECT switch, read the
FREQUENCY potentiometer, and set the output waveform and
frequency of the DDS module accordingly.

As I mentioned earlier, most of the Analog Devices DDS
chips are interfaced using the same 1/0 methods and register
control bits, so I was able to adapt an existing sketch designed
for the AD9837 DDS that I found online to use as the core
functions in the Waveform Generator sketch.

Starting out with creating the sketch, we'll need to include
the SPI. h library for the AD9833, and the Wire.hand
LiquidCrystal _ I2C. h libraries for the 16x212C LCD,
along with our pin and other definitions. The complete sketch
can be found in Appendix A and online at www.wSobm.us/
Arduino.

Figure 18.1 O - Waveform Generator flowchart.

Waveform Generator 18-7

#include <SPI .h> II SPI Library

#include <Wire.h> ll I 2C Library

#include <LiquidCrystal I2C . h> II Liquid Crystal I2C Library

#define FSYNC 2 II Define FSYNC Pin on Digital Pin 2

#define Square_wave 3 II Define Square Wave Switch on Digital Pin 3

#define Triangle_ wave 4 I I Define Triangle Wave Switch on Digital Pin 4

#define min_freq 50 II Define the minimum frequency as 50Hz

#define max_freq 10000 II Define the maximum frequency as 10 KHz

#define frequency_pot AO II Define the Frequency Adjust pot on Analog Pin 0

Next we'll define the variables we'll need and create the LCD object:

long debounce = max_freqllOOO ; II debounce the frequency control pot

l ong freq; 1132 - bit global frequency variable

II variables for frequency selection

long previous frequency = 0 , desired_frequency

II variables for waveform selection

int wave type, previ ous type = 0, wave data Ox2000 ;

canst in t led end= 16; II set width of LCD

canst int led address = Ox27 ; II I 2C LCD Address

canst int l ed lines= 2; II Number of lines on LCD

II set the LCD I2C address to Ox27 for a 16 chars and 2 line display

LiquidCrystal I2C lcd (l cd_address ,l cd_end,lcd_lines);

In the setup () loop, the majority of the work is spent setting up the 16x2
LCD and displaying a brief startup message so you know everything is going
well to this point.

l cd.init() ; II initialize the LCD

l cd . backlight(); II Turn on the LCD backlight

led.home (); II Set the cursor to line 0 , column 0

led.print(" KW5GP Waveform"); II Display the startup screen

l cd . setCursor(3 , l) ;

lcd. print ("Generator ") ;

delay(3000);

l ed. clear() ;

lcd.print("Freq: "); II Set up the LCD display

l cd . setCursor(O,l);

lcd.print("Sine Wave");

In the last part of the setup () loop, we define the pin modes for the
AD9833 and the WAVEFORM SELECT switch, enable the 20 kn internal pull-up

18-8 Chapter 18

resistors on the WAVEFORM SELECT switch pins, initialize the AD9833, and start
the SPI bus. Note that the AD9833 requires SPI Mode 2 to communicate via
the SPI bus. SPI Mode 2 will clock the data from the Arduino to the AD9833
on the falling edge of the SCK signal. Failure to select SPI Mode 2 will cause
communication issues with the AD9833, since the default mode for SPI is
Mode 0, where the data is clocked out on the rising edge of the SCK signal.

pinMode(FSYNC, OUTPUT); II Set the FSYNC Pin as an Output

II Set the Square_wave Control Pin as an Input

pinMode(Square_wave, INPUT);

II Set the Triangle_wave Control Pin as an Input

pinMode(Triangle wave, INPUT);

II Enable the Internal Pullup Resistor on the Square wave Control Pin

digitalWrite(Square_wave, HIGH);

II Enable the Internal Pullup resistor on the Triangle wave Control Pin

digitalWrite(Triangle_wave, HIGH);

digitalWrite(FSYNC, HIGH); II Set FSYNC High - disables input on the AD9833

SPI.setDataMode(SPI_MODE2); II requires SPI Mode 2 for AD9833

SPI.begin(); II Start the SPI bus

delay(lOO); llA little set up time, just to make sure everything's stable

The main loop () for the sketch is relatively short and to the point. The
majority of the work dealing with the AD9833 is handled by two function calls.

wave type= O; II Default to Wave Type 0 - Sine Wave

if (digitalRead(Square wave) ==LOW) II Check the Square Wave switch pin

wave type= l; II Set the Wave Type to 1 for a Square wave

if (digitalRead(Triangle wave) ==LOW) II Check the Triangle Wave switch pin

wave_type = 2; II Set the Wave Type to 2 for a Triangle Wave

II Read the frequency pot to determine desired frequency

desired_frequency = map(analogRead(frequency_pot),1,1020,min freq , max freq);

Next, we'll update the AD9833 frequency and mode settings if anything
has changed. We "debounce" the FREQUENCY SELECT potentiometer to

Waveform Generator 18-9

prevent frequency changes if the analog-to-digital conversion value from the
potentiometer changes slightly due to noise. After updating the AD9833, we
display any changes to the LCD.

II Update the DDS frequency if we've changed frequency or wave type

if (desired_frequency > (previous frequency+debounce) I I desired_frequency <
(previous frequency - debounce) I I (wave type !=previous type))

II Call the Function to change frequency and/or waveform type

WriteFrequencyAD9833(desired_frequency);

previous_frequency = desired_frequency; II Update the frequency variable

previous_type =wave type; // update the wave type variable

lcd.setCursor(O,l); //Display the Wave Type on the LCD

switch(wave type)

case 0: II Type 0 =Sine Wave
lcd.print("Sine Wave ");

break;

case 1: // Type 1 = Square Wave

lcd.print("Square Wave ");

break;

case 2: II Type 2 =Triangle Wave

lcd.print("Triangle Wave ");

break;

There are two functions used to communicate with the AD9833. The
Wri teFrequencyAD 9833 () function is used to set the selected frequency
and waveform type:

II Function to change the frequency and/or waveform type

void WriteFrequencyAD9833(long frequency)

II
int MSB; //variable for the upper 14 bits of the frequency

int LSB; //variable for the lower 14 bits of the frequency

int phase O; II variable for phase control

II We can't just send the actual frequency , we have to calculate the

II "frequency word". This works out to

II ((desired frequency)/(reference frequency)) x OxlOOOOOOO.

II calculated_freq_word will hold the calculated result.

long calculated_freq_word; //variable to hold calculated frequency word

18-10 Chapter 18

float AD9833Val = 0.00000000; II variable to calculate frequency word

II Divide the desired frequency by the DDS Reference Clock

AD9833Val = (((float) (frequency)) /25000000);

II Divide the frequency by 2 if we're generating Square waves

if (wave type == 1)

AD9833Val = AD9833Val * 2;

II Finish calculating the frequency word

calculated_freq_ word = AD9833Val*Oxl0000000;

II Display the current frequency on the LCD

lcd.setCursor(6,0);

lcd.print(String (frequency) +"Hz ");

II Once we've got the calculated frequency word, we have to split

II it up into separate bytes.

MSB (int) ((calculated_freq_word & OxFFFC000)>>14); II Upper 14 bits

LSB = (int) (calculated_freq_word & Ox3FFF); // Lower 14 bits

II Set control bits DB15 and DB14 to 0 and one, respectively, to

II select frequency register 0

LSB I= Ox4000;

MSB I= Ox4000; II Has to be done for both frequency words

phase &= OxCOOO; II Set the Phase Bits (defaults to 0)

II Set the Control Register to receive frequency LSB and MSB

//in consecutive writes

WriteRegisterAD9833(0x2000);

//Set the frequency

II Write the lower 14 bits to the Frequency Register of the AD9833

WriteRegisterAD9833(LSB); //lower 14 bits

II Write the upper 14 bits to the Frequency Register of the AD9833

WriteRegisterAD9833(MSB); //upper 14 bits

II Write the phase bits to the Phase Register

WriteRegisterAD9833(phase); //mid-low

II Select the correct Register settings for the desired Waveform

switch (wave type)

case 0: // Sine Wave

wave data Ox2000;

Waveform Generator 18-11

break;

case 1: // Square Wave

wave data = Ox2020;

break ;

case 2: // Triangle Wave

wave data = Ox2002 ;

break;

WriteRegis terAD9833 (wave data); //Write the Waveform type to the AD9833

The Wri teRegisterAD9833 () function is the part of the sketch that
performs the actual SPI bus transfer of data from the Arduino to the AD9833.

II Function to write the data to the AD9833 Registers

void WriteRegisterAD9833(int dat)

//Set FSYNC l ow - Enables writing to the DDS Registers

digitalWrite(FSYNC, LOW) ;

SPI.transfer(highByte(dat)); //Send the Hi gh byte of data

SPI . transfer (lowByte(dat)) ; II Send the Low byte of data

//Set FSYNC high - Disable writing to the DDS Registers

digitalWri te (FSYNC , HIGH);

18-12

Once the Waveform Generator was finally up and running on the breadboard,
the output amplifier circuit was added. I chose to use a Texas Instruments
LM386 audio power amplifier chip. The LM386 is a single power supply
voltage, self-contained audio power amplifier, with a selectable gain from 20
to 200, bandwidth of 300 kHz, and an output of 325 mW. I chose the LM386
over a standard op amp because the LM386 does not require a feedback resistor
or any other external components to operate at its default gain of 20. The 300
kHz bandwidth of the LM386 was more than adequate for what the design of
the Waveform Generator called for. If you desire your Waveform Generator to
operate up to the full 12.5 MHz bandwidth of the AD9833 DDS module, you'll
need to replace the LM386 circuit with an op amp circuit capable of handling the
higher frequencies .

Once the LM386 was added to the breadboard, along with a IO-tum IO kQ
potentiometer on the input to the LM386 for level control, we could create the
finished schematic for the Waveform Generator (Figure 18.11). The finished
project was soldered up on an Arduino protoshield and mounted in a SparkFun
clear pcDuino/ Arduino enclosure. The external switches, FREQUENCY SELECT

potentiometer and output jack were mounted to the enclosure shell (Figure 18.12).

Chapter 18

Vee U2
AD9833

+5V

6
Voo OUT

7 FNC
3

REF
4

CLK

2
GND DAT

5

Select Waveform
Center Off= Sine Wave

U1
Arduino Uno R3

+5V

Output >4--- --o
Level

R3
4.7 kO

Figure 18.11 - Waveform Generator schematic diagram.

BT1 - 9 V battery. S1 - SPST switch.

_J

u
Cf)

7 C1 Output
5 + t-:--o--v

1 8 10µF o--A vn J1

LM386 ~

U4 16x2 LCD

R4
4.7 kO

0
z
(.'.)

ARRL 1138

C1 -10 µF, 35 V electrolytic capacitor. S2 - SPOT center-off switch.
01 - 1 N4001 diode. U1 - Arduino Uno.
J1 - Stereo mini jack. U2 - AD9833 programmable waveform generator
R1 - 1 kn potentiometer. breakout board.
R2 - 10 kn 10-turn potentiometer. U3 - LM386 audio power amplifier.
R3, R4- 4.7 kn, Va W resistor. U4-16x212C LCD.

Figure 18.12 -
Inside view of
the finished
Waveform
Generator.

Waveform Generator 18-13

Figure 18.13 - Sine wave output of
the AD9833 at 10 kHz. The waveform
stayed clean all the way up to
12.5 MHz.

Figure 18.14 - Square wave output
of the AD9833 at 10 kHz.

Figure 18.15 - Triangle wave output
of the AD9833 at 1 o kHz.

18-14 Chapter 18

Once everything was mounted in the enclosure, some
final tests were run to see how everything performed.
By using a DDS module to generate our waveforms, the
output waveforms were very crisp and distortion free
across the entire 12.5 MHz operating range of the AD9833
DDS module (measured before the LM386 amplifier). Due
to the coupling capacitor on the LM386, the edges of the
square wave output started to lose their sharpness around
50 kHz, well above the 20 kHz point we set when the
circuit was designed. Figures 18.13 to 18.15 show sample
waveforms.

The real fun came when I hooked up a frequency
counter to see how accurate the DDS really was. They
weren't lying about the 0.1 Hz resolution. The frequency
output is dead on across the entire range as shown in the
sample in Figure 18.16. So, what I thought was going to
be a simple waveform generator has been transformed into
a precision signal generator. You could actually use this
circuit as the basis for a highly accurate VFO with a digital
frequency display.

Enhancement Ideas
Since this project ended up way beyond being just

an audio frequency waveform generator, there's a lot
you can do with it. The potentiometer used to control the
waveform generator has set limits, and if you increased the
range of the potentiometer, you would lose your ability to
accurately set a frequency. Replacing the potentiometer
with a rotary encoder and an SPDT center-off switch
would allow you to use the switch to select three different
frequency stepping sizes (for example 1 Hz, 100 Hz
and 10 kHz), and you could tum the rotary encoder
continuously until you dialed in the exact frequency
without having to tum it forever across the entire
12.5 MHz range. You could also add a control to adjust the
phase shift of the output waveform. You could add a five
position band switch and use this as the basis for an HF
band VFO, or even a QRP transmitter. This is one of those
projects that is only limited by your imagination. I started
out being somewhat leery of the DDS modules, and now
that I know how easy they really are to use, I can think of a
whole list of projects I want to use with them.

Figure 18.16 - Measuring the accuracy of the Waveform
Generator.

References
Analog Devices - www.analog.com
Arduino Playground - playground.arduino.cc
RadioShack - www.radioshack.com
SparkFun Electronics - www.sparkfun.com
Texas Instruments - www.ti.com

Waveform Generator 18-15

CHAPTER19

PS/2 CW Keyboard

The finished PS/2 CW Keyboard mounted in
a SparkFun pcDuino/Arduino enclosure.

As I've said earlier, CW has always been one of my first loves. However,
over the years I've gotten away from it in favor of the digital modes, unless it's
ARRL Field Day, then I'm planted somewhere on 20 or 40 meter SSB. But,
I've recently wanted to get back into CW, and while my CW receiving speed is
getting there, my sending "fist" leaves much to be desired. I don't get the usual
"QLF" (Try sending with your left foot) reports. If there was such a thing, I'd
more likely get something more like "QSF" (Are you sending with someone
else's foot?) signal reports. I mean, my CW fist is bad, really, really bad.

Still, I enjoy working CW when I can, so I came up with the PS/2 CW
Keyboard. This was actually one of the very first Arduino projects that I built.
Originally, the project was built with an Ardweeny, but, as all early projects go,
I wanted to upgrade it to an Arduino Uno in version 2 to make it look nicer, and
to take advantage of the built-in voltage regulator on the Uno. Also, this was my

PS/2 CW Keyboard 19-1

ARRL1139

16x2 I2C LCD

Arduino Uno

Keyboard

Figure 19.1 - PS/2 CW Keyboard block diagram.

PS/2 CW Keyboard

LS1 D2
1 N4001 ----=--=-n

Reed Relay

Key
>----out ...,_, __ .,.....,....

Piezo Speaker

Key Out

R1
4.?kO

To PS2 Keyboard
DIN Connector

~ U2

Power

9V

ARRL1140

Figure 19.2 - PS/2 CW Keyboard Fritzing diagram.

19-2 Chapter 19

chance to clean up the circuit board, as the Ardweeny version had been built on
a standard piece of perfboard and was shoehorned into the project enclosure.
Now, the new version of the project fits on an Arduino protoshield and looks
much nicer.

For the PS/2 CW Keyboard, I wanted to use a standard PS/2-style keyboard,
with variable sending speeds, and the ability to send either an audio tone to
a speaker or plug into the standard key jack of a transmitter. I also wanted to
be able to experiment with the EEPROM onboard the Arduino, so the PS/2
CW Keyboard would have five user-programmable 40 character memories
that retain their information, along with the last selected sending speed and
keying mode, after a reset or power-off. Finally, I also wanted to be able to tum
the LCD backlight on or off via the keyboard. Figure 19.1 shows the block
diagram.

Now that we know what we want our PS/2 CW Keyboard to do, the
next step is to assemble a circuit prototype on the breadboard as shown in
Figure 19.2. The older PS/2-style keyboard was chosen for its simple interface
and availability. For the PS/2-style keyboards, all you need to do is connect the
Data and Clock lines, along with power and ground, from the PS/2 keyboard
to the Arduino. The communication between the Arduino and the keyboard is
handled by the PS2Keyboard. h library found in the Arduino Playground.
For use with the PS/2 CW Keyboard sketch, the PS2Keyboard. h library had
to be modified to support the Fl-Fl2 keys, so when you compile your sketch, be
sure to use the library in Appendix A, or download the modified library from
www.wSobm.us/ Arduino.

Creating the Sketch
We'll be introducing a couple of new features with this project. Since most

modem CW keyers have memories, I wanted the PS/2 CW Keyboard to have
memories as well. To accomplish this, we'll be using the built-in Arduino
eeprom. h library to save our five memory function keys in the Arduino's
onboard EEPROM memory, so that they will not be erased by a reset or power
off. As mentioned above, we'll also be using the PS2Keyboard. h library to
interface with the PS/2-style keyboard.

Because we are using the Arduino's onboard lK of EEPROM memory and
building five 40 character CW memories, the logic for the PS/2 CW Keyboard
sketch is a little more complex than the previous projects. Again, we'll start
out with a flowchart (Figure 19.3) to break this down into manageable chunks.
Fortunately, the libraries do most of the heavy lifting, so things are not really as
difficult as they look at first glance.

The PS/2 CW Keyboard has multiple functions all controlled by keyboard
commands. The left and right arrow keys are used to tum the LCD backlight on
and off, while the up and down arrows are used to increase or decrease the CW
sending speed by 1 word per minute (WPM). The Fl 1 and F12 keys are used
to select whether the CW is sent as an audio tone via a speaker or as a keying
signal via the keying relay.

We have assigned the Fl through F5 keys as our CW memory (macro) keys.
If we have previously saved data to these keys, the data will be sent each time
the selected memory key is pressed. Each memory key can contain up to the

PS/2 CW Keyboard 19-3

Start

Include Libraries
Define EEPROM Data Format

Define Pins and Variables
Define LCD

Setup

Setup Digital 110 Pins
Initialize LCD

Initialize PS/2 Keyboard

Loop

Read Keyboard

No Display the Character on LCD

Yes

No

Change Selected Option

Backlight (Left or Right Arrow)
Tone/Key Mode (F11/F12)

Sending Speed (Up or Down Arrow)

Send character

Save Macro to
Selected Function Key

(F1-F5)
Insert = Create

End= Done
F10 =Save

Figure 19.3 - PS/2 CW Keyboard flowchart.

ARRL1141

number of characters defined by the bufflen variable minus 1 character. In
this sketch, bufflen is set to 41. This means that you can have 40 characters
in each of the five CW memories, with the last character in the entry reserved
to indicate the end of the memory data. To create a memory key entry, press the
INSERT key. This will display "Select Macro Key" on the LCD. Press the desired
memory key (Fl through F5). The LCD will then display "Fx Macro Key
Entry", where x will be the number of the function key you selected. Then, type
the message you want to store to that CW memory key. When you have finished

19-4 Chapter 19

entering the message, press the END key, and the message will be assigned to the
selected function key and saved in the Arduino's onboard EEPROM. When you
save an entry to any memory function key, the current sending speed and keying
mode are also saved to the EEPROM. Since the CW memory data, the sending
speed and keying mode are stored in the Arduino's onboard EEPROM, they will
be reloaded automatically any time you reset or power cycle your Arduino.

Also, if you want to save the current sending speed and keying mode at any
time, just press the FlO key. This will store all of the current CW memories and
operating parameters to the Arduino's onboard EEPROM.

Since the Arduino's EEPROM isn't part of the storage normally used
for variable data, we have to manually handle the reading and writing of
information to the EEPROM. The eeprom. h library does a lot of the work
for us, but we still have to manually define the format needed for the data we'll
be storing in the EEPROM. We'll also be defining our own command, the MI N

statement, used to determine the minimum of two values.

#include <avrleeprom.h> II Include the AVR EEPROM Library

II Define the EEPROM data format

#define eeprom_read_to(dst_p , eeprom_field, dst size) eeprom read block(dst_p,

(void *)offsetof(eeprom_data, eeprom_field), MIN(dst size , sizeof((eeprom_

data*) 0) - >eeprom_fie ld))

#define eeprom_read(dst, eeprom_field) eeprom_read_to(&dst , eeprom_field,

sizeof (dst))

#define eeprom_write from(src p, eeprom_field, src_size) eeprom_write_block(src_p,

(void *)offsetof(eeprom_data, eeprom_field), MIN(src_size, sizeof((eeprom_

data*) 0) - >eeprom_fie ld))

#define eeprom_write(src, eeprom_field) { typeof(src) x = src; eeprom_write

from (&x, eeprom_field, sizeof (x));

#define MIN(x, y) (x > y ? y : x II Define a MIN function

#include <Morse .h> II Include the Morse Library

#inc l ude <PS2Keyboard.h> II Include the PS2Keyboard Library

#include <Wire.h> II Include the Wire Communication Library

#include <LiquidCrystal I2C.h> II Include the LiquidCrystal I2C Library

The five CW memories used in this project each can hold up to 40 CW
characters. When you add in all the other variables and constants used in this
sketch, you'll find that we are right on the edge of running out of RAM for
our variables. In fact, several times during the development of the sketch,
strange things would start happening, and it turned out I had run out of variable
memory space. Remember, the Arduino doesn't give you a convenient "Out
Of Memory" error, so when you do run out of memory, your sketch will just
start doing strange things. To help keep track of the memory usage, I added
the get_ free_ memory () function from the Arduino Playground so that I
could display the amount of free RAM still available. To use the get free
memory (),we need to define some external variables in C.

PS/2 CW Keyboard 19-5

extern int ~bss end; II Used by Free Memory function

extern int *~brkval;

Next we'll define all the constants and variables used in the sketch:

const int buflen = 41; II Set size of Macros to 40 characters

const int led end= 16; II set width of LCD

const int led home= O; II set the LCD home position

const int comm_speed 9600; II Set the Serial port speed

const int current id= 18; II EEPROM ID - used to verify EEPROM data is valid

const int lcd_address = Ox27; II I2C LCD Address

const int lcd_lines = l; II Number of lines on LCD

const int beep_pin = 11; II Pin for CW tone

const int key_pin 12; II Pin for CW Key

const int beep_on l; II 0 =Key , 1 =Beep

II Define the text data

con st String EE PROM invalid = "EE PROM data not valid";

con st String ready = "Keyer Ready";

con st String free mem = "Free Mem:"; -
con st String spd = "Speed = " . ,
con st String fl key "Fl";

con st String f2key "F2 ";

con st String f3key "F3" ;

con st String f4key "F4";

con st String f5key "F5";

con st String macro " Macro";

con st String selected = " Entry";

const boolean one = l;

const boolean zero = O;

const int start speed 15; II Starting CW speed

const String mode = " Mode";

II Set the PS2 keyboard IIO pins

const int DataPin = 5; II Set PS2 Keyboard Data Pin

const int IRQpin = 3; II Set PS2 Keyboard Clock Pin

char c; II variable to hold the CW character to send

int key_speed = start speed;

int cursor_pos = lcd_home;

int cursor_line = lcd_home;

boolean create macro = zero;

II the current keying speed

II the current cursor position

II the current cursor line

II create macro flag

boolean macro select= zero ; II the current macro be ing created

String macro_data; II the current macro data

String add_data;

char macro_key;

String Fl_data

String F2 data

II the new macro data to replace

II The macro entry key

""; II The macro key data
\\II • ,

19-6 Chapter 19

String F3 data

String F4 data

String F5 data

,,,, . ,
"''. ,
"". ,

II Boolean variable to select keying or beep mode . O

boolean morse_beep = one;

char xF[buflen]; //Temporary macro key data

String fdata;

int id; II Our EEPROM id number read from the EEPROM

int morse speed; // The CW sending speed

key, 1 beep

Next, we'll define the structure of the data we'll be storing in EEPROM:

/*

* ~eeprom_data is the magic name that maps all of the data we are

* storing in our EEPROM

*/

struct ~eeprom_data II The structure of the EEPROM data

} ;

char eFl [buflen]; II the Fl macro

char eF2 [buflen] ; II the F2 macro

char eF3 [buflen] ; II the F3 macro

char eF4[buflen]; II the F4 macro

char eF5 [buflen] ; II the F5 macro

int e speed; II the CW speed

boolean e_beep; II beep or key mode

int EEPROM ID;

char * F;
II the EEPROM ID

Finally, we'll create the PS2Keyboard object as a 16-character by 1-line
display. As you may recall from the Code Practice Oscillator project, the
libraries for the 16-character by 2-line Hitachi HD44780-compatible displays
don't handle two-line scrolling very well, so we'll be scrolling our data on just
one line of the LCD. At this point, we'll also define a new Morse library object
and set it to beep on pin 11, set the keying speed to the default of 15 WPM, and
enable the speaker output.

PS2Keyboard keyboard; II define the PS2Keyboard

II set the LCD address to Ox27 for a 16 chars and 1 line display

II The display is a 2 line display, but we only want scrolling on one line

LiquidCrystal I2C lcd(lcd_address,lcd_end,lcd_lines);

//default to beep on pin 11, key speed to 15wpm and enable the speaker output

Morse morse(beep_pin, key_speed, beep_on);

PS/2 CW Keyboard 19-7

In the setup () loop, we'll initialize the PS/2 keyboard and the LCD, and
define the five memory buffers corresponding to the Fl through F5 keys on the
PS/2 keyboard:

keyboard.begin(DataPin, IRQpin); II Start the Keyboard

lcd.init(); II initialize the led

lcd.backlight(); II Turn on the LCD backlight

led.home(); II Go to Home position on LCD

lcd.print(ready); II Show Ready on LCD

lcd.setCursor(lcd_end,lcd_home); II Move to the end of Line 0

lcd.autoscroll(); II Enable Autoscroll

II Define the function keys

char Fl[buflen], F2[buflen], F3[buflen], F4[buflen], FS[buflen];

In the last portion of the set up () loop, we'll read the contents of the
EEPROM and save them into RAM:

eeprom_read(id,EEPROM ID); II Read the EEPROM

II We put a set value in the EEPROM data to indicate the data is valid. If

II the set value is not there, the data is considered to be invalid

if (id != current_id)

II Data not valid - keep the default settings

else {

II valid EEPROM DATA - Read EEPROM data

eeprom_read(Fl,eFl); II Read the EEPROM data for the function keys

eeprom_read(F2,eF2);

eeprom_read(F3,eF3);

eeprom_read(F4,eF4);

eeprom_read(F5,eF5);

II Read the EEPROM data for the current speed

eeprom_read(morse_speed,e_speed);

II Read the EEPROM data for the current mode (Beep or Key)

eeprom_read(morse_beep,e_beep);

II Save EEPROM data to variables

Fl data String(Fl);

F2 data String(F2);

F3 data String(F3);

F4 data String(F4); -
F5 data String(F5);

key_speed = morse_speed; II Set the Key Speed

mode set(); II Set the Mode (beep or key)

19-8 Chapter 19

In the main loop, we wait for a key to be pressed on the PS/2 keyboard, then
use a swi tch ... case () statement to determine what to do with the incoming
characters. The first thing we do is check to see if it is a command that needs
special handling. You'll notice that the logic is already included to decode most
of the keyboard characters, but only a few are actually used.

II Check the keyboard to see if a key has been pressed

if (keyboard.available())

c = keyboard.read(); II read the key

II check for some of the spec i al keys

switch (c) II Case Statement to determine which key was pressed

case PS2 ENTER: II The ENTER key - Not Used

break;

case PS2 TAB: II The TAB key - Not Used

break;

case PS 2 ESC : II The ESC key - Not Used

break;

case PS2 PAGEDOWN: II The PageDown key - Not Used

break;

case PS2 PAGEUP: II The PageUp key - Not Used

break;

case PS2 LEFTARROW: II The Left Arrow key

lcd.noBacklight(); II Turn the LCD backlight off

break;

case PS2 RIGHTARROW: II The Right Arrow key

lcd.backlight(); II Turn the LCD backlight on

break;

case PS2 UPARROW: II The Up arrow key

key_speed = key_speed ++; II Increase CW Speed by lwpm

lcd.noAutoscroll(); II Clear the LCD and display current speed

led.clear();

led. home() ;

lcd.print(spd + String(key speed));

lcd.setCursor(lcd_end,lcd_home);

lcd.autoscroll();

increase speed(); II increase the CW speed by lwpm

break;

PS/2 CW Keyboard 19-9

case PS2 DOWNARROW: II The Down Arrow key
key_speed = key_speed , II decrease CW speed by lwpm

lcd.noAutoscroll();ll Clear the LCD and display current speed

led.clear();

led.home();

lcd.print(spd + String(key_speed));

lcd.setCursor(lcd_end,lcd_home);

l cd.autoscroll();

decrease speed(); II decrease the CW speed by lwpm

break;

case PS2 DELETE: II The DELETE key

morse.sendmsg("EEE");ll Send 3 dits for error

break;

We handle the Fl through F5 keys differently because they have differing
functions depending on whether you are sending the CW memory data assigned
to that key, or are in the process of assigning CW memory data, referred to in
the sketch as the macro data, to the selected function key.

case PS2 Fl: II Macro Key Fl
II If the Fl key has a macro assigned to it and we are not

II currently creating a macro, send the macro via CW

if (Fl_data !="" and !create_macro)

send_macro(Fl_data); II Send the Macro data if we're not creating it
break;

if (create_macro) II If we're creating the macro for Fl

II Check Macro select and select this key if not already selected
if (macro select)

II We've already selected it, break out - we want to add data
break;

else {

II Select Fl Macro
lcd.noAutoscroll();

led.clear();

led . home();

lcd.print(flkey +macro+ selected); II Display the macro key selected
l cd.setCursor(lcd_end,lcd_home);
lcd.autoscroll();

macro_select =one; II A macro key has been selected

macro key PS2 Fl; II The macro key we're creating is Fl

else

break;

break;

19-10 Chapter 19

We then duplicate this operation for the F2 thru F5 keys:

case PS2 F2: II Macro Key F2

if (F2_data ! ='"' and ! create_macro)

send_macro(F2_data); II Send the Macro data if we're not creating it

break;

if (create_macro)

II Check Macro select and select this key if not already selected

if (macro select)

II We've already selected it, break out - we want to add data

break;

else {

II Select F2 Macro

lcd.noAutoscroll();

led. c lear();

led. home() ;

lcd.print(f2key +macro+ selected); II Display the macro key selected

lcd.setCursor(lcd_end,lcd_home);

lcd.autoscroll();

macro select = one;

macro_key

else

break;

break;

PS2 F2;

II A macro key has been selected

II The macro key we're creating is F2

case PS2 F3: II Macro Key F3

if (F3_data !="" and !create_macro)

send_macro(F3_data);ll Send the Macro data if we're not creating it

break;

if (create macro)

II Check Macro select and select this key if not already selected

if (macro_select)

II We've already selected it, break out - we want to add data

break;

else {

II Select F3 Macro

lcd.noAutoscroll();

led.clear();

PS/2 CW Keyboard 19-11

led . home () ;

lcd.print(f3key +macro+ selected); II Display the macro key selected

lcd . setCursor(lcd_end,lcd_home);

lcd . autoscroll();

macro select= one; II A macro key has been selected

macro key

else

break;

break ;

case PS2 F4:

PS2 F3; II The macro key we're creating is F3

if (F4 data !="" and !create_macro)

send_macro(F4 data); II Send the Macro data if we're not creating it

break;

if (create_macro)

II Check Macro select and select this key if not already selected

if (macro select)

II We've already selected it, break out - we want to add data

break;

else {

II Select F4 Macro

lcd.noAutoscroll();

led.clear();

led . home() ;

lcd . print(f4key +macro+ selected); II Display the macro key selected

lcd.setCursor(lcd_end,lcd_home);

lcd.autoscroll();

macro_select =one; II A macro key has been selected

macro_key

else

break;

break;

case PS2 F5:

PS2 F4; II The macro key we're creating is F4

if (F5 data !="" and ! create_macro)

send_macro(FS_data); II Send the Macro data if we're not creating it
break;

if (create_macro)

19-12 Chapter 19

II Check Macro select and select this key if not already selected
if (macro select)

II We've already selected it, break out - we want to add data
break;

else {

II Select F5 Macro

lcd.noAutoscroll();

led.clear();

led. home () ;

lcd.print(f5key +macro+ selected); II Display the macro key selected

lcd.setCursor(lcd_end,lcd_home);

lcd.autoscroll();

macro select= one; II A macro key has been selected

macro key

else

break;

break;

PS2 F5; II The macro key we're creating is F5

Again, the F6 through F9 keys are decoded, but do not have any actions
assigned to them:

case PS2 F6: II
break;

case PS2 F7: II
break;

case PS2 F8: II
break;

case PS2 F9: II
break;

The F6 key - Not Used

The F7 key - Not Used

the F8 key - Not Used

The F9 key - Not Used

We can use the Fl 0 key to save our current CW memory data, sending
speed and keying mode to the EEPROM at any time:

case PS2 FlO: II The FlO key

save_macro(); II Save all data to the EEPROM

break;

We use the Fl 1 and F12 keys to switch between the beep and keying modes:

case PS2 Fll: II Fll key - Turn on Beep Mode

lcd.noAutoscrol l();

led.clear();

led. home() ;

PS/2 CW Keyboard 19-13

lcd.print("Beep" +mode); II Clear the LCD and display Beep Mode

lcd.setCursor(lcd_end,lcd_home);

lcd.autoscroll();

morse_beep = one;

mode set(); II Set the Mode to Beep

break;

case PS2 Fl2: I I F12 key - Turn on Key Mode

lcd.noAutoscroll();

l ed.clear();

led.home();

lcd.print("Key" +mode); II Clear the LCD and display Keying Mode

lcd.setCursor(lcd_end,lcd_home);

lcd.autoscroll();

morse_beep = zero ;

mode set(); II Set the Mode to Keying

break;

The INSERT key is used to initiate the process of creating a CW memory
entry:

case PS2 INSERT: II INSERT key - Enter Macro Key Data

II If we want to create a macro but haven't selected a key yet

if (!create_macro and !macro select)

lcd.noAutoscroll();

led.clear();

led.home();

l cd.print("Select" +macro+" Key"); II Display F-Key Selection Message

lcd.setCursor(lcd_end,lcd_home);

lcd.autoscroll();

create macro = one; II Set the Create macro flag

macro data II Clear the macro data -"'' · - ,

break;

The END key is used to signify the end of a macro entry:

case PS2 END: II END key - End Macro Data Entry

II If we're creating a macro entry, check to see if a key was selected

if (create_macro)

II Abort or Save the Macro

l cd.noAutoscroll() ;

led.clear();

led.home();

if (macro_select) II If a macro key has been selected, save it

19-14 Chapter 19

save_macro(); II Save the Macro data to EEPROM

lcd.print(macro +"Saved"); II Display "Saved" on the LCD

else {

II Aborting - Don't save and display "Aborted" on the lCD

lcd.print(macro +"Aborted");

II We're all done with the Macro, clear the screen and reset the flags

lcd.setCursor(lcd_end,lcd_home);

lcd.autoscroll();

create macro

macro select

break;

zero;

zero;

As the last step in the swi tch ... case () statement, the default action is to
do nothing and continue on through the loop:

default: II Otherwise do the default action, which is to continue on

As the last step in the main loop () , we handle the building of the CW
memory entry if we are creating one, check to see if we've ended the creation of
a CW memory entry, or just send the character normally.

if (create_macro) II If we're creating a macro

II check to see if we have selected key

if (macro_select) II If we have a valid key, get the macro data

lcd.noAutoscroll();

led.clear();

led.home();

II Display that we're ready to enter Macro data for the selected key

lcd.print("Enter" +macro);

c = toupper(c); II convert the character to uppercase

II As l ong as the macro is <=max length, add to the macro data

if (macro data.length()<(buflen - 1))

macro data= String(macro_data) + String(c);

lcd.setCursor(lcd_end,lcd_home);

lcd.autoscroll();

else {

II Select the Macro Key

if (c == PS2_END) II Check to see if we want out

{

macro select

create macro

zero; II Reset the Macro Flags

zero;

PS/2 CW Keyboard 19-15

else

II If we're not doing the Macro thing just print the character to the LCD

II and send all normal characters

lcd.write(toupper(c)); II Display the character on the LCD

morse . send(c); II Send the character

In the main loop () , we call one of two functions to increase or decrease
the CW sending speed. As you can see, the Morse . h library actually handles
all the speed changes for us .

int increase speed() // Function to Increase CW Speed by lwpm

if (morse_ beep)

Morse morse(beep_pin, key_speed, one); //beep

else {

Morse morse(key_pin, key speed, zero); II no beep

return key_speed;

int decrease speed() II Function to decrease CW Speed by lwpm

if (morse_beep) {

Morse morse(beep_pin, key_speed, one); II beep

else {

Morse morse(key_pin, key_speed, zero); II keyer

return key_speed;

The save_ macro () function is used to save the CW memory information
to the specified memory function (macro) key and to the Arduino's onboard
EEPROM.

II Function to Save the macro to variable - and write it to EEPROM

void save_macro()

II Trim the function key data if longer than the memory key buffer

if (macro_data.length() > (buflen - 1))

macro_ data = macro_ data. substring (0, (buflen - 1)) ;

switch (macro key) II Determine which key to save the data to

19-16 Chapter 19

case PS2 Fl:

Fl data macro data;

break;

case PS2 F2:

F2 data macro data; -
break;

case PS2 F3:

F3 data macro data;

break;

case PS2 F4:

F4 data macro data;

break;

case PS2 F5:

F5 data macro data;

break;

II The EEPROM ID byte is used to signify the EEPROM has valid dats

id= 18; II set the EEPROM ID Byte

morse_speed = key_speed; II set the keying speed

morse_beep = l ; II set the beep mode

fdata = Fl data;

m data() ; II Format the data for writing to EEPROM

eeprom_write from(xF, eFl ,buflen); II Write the Data to EEPROM

fdata = F2 data;

m_data(); II Format the data for writing to EE PROM

eeprom_write from (xF, eF2,buflen); II Write the Data to EEPROM

fdata = F3 data;

m_data(); II Format the data for writing to EE PROM

eeprom_write from(xF , eF3 ,buflen); II Write the Data to EEPROM

fdata = F4 data;

m_data (); II Format the data for writing to EE PROM

eeprom_write from(xF , eF4,buflen) ; II Write the Data to EEPROM

fdata = F5 data ;

m_data(); II Format the data for writing to EEPROM

eeprom_write from (xF , eF5,buflen); II Write the Data to EEPROM

PS/2 CW Keyboard 19-17

eeprom_write(morse speed,e speed); II Write the current speed to EEPROM

eeprom_write(morse_beep,e_beep); II Write the current mode to EEPROM

eeprom_write(id,EEPROM_ID); II Write the EEPROM ID to EEPROM

fdata = "";

vo i d m_data ()

The m _data () function is used to convert our memory key variable data
to a format that can be written to and read from the EEPROM.

II Function to convert data to EEPROM writable format

II This routine figures out where to write the variable data in the EEPROM

char yFl[buflen];

int i = 0;

if (fdata.length() > (buflen - 1)) II trim the data to the right size

{

fdata = fdata.substring(O, (buflen - 1));

II if the var i able has data, assign it to t he variable one

II character at a time for each Macro key

if (fdata.length() > 0)

while (i <= fdata.length() -1)

yFl[i]

i++;

yFl [i] O;

i = 0;

fdata.charAt(i);

II place the data in the variable one character at time

II to write to the EEPROM

while (yFl [i] != 0)

{

x F[i] = yFl [i];

i++;

xF [i] 0;

19-18

The send_ macro () function is used to send the CW memory (macro)
data when any of the CW memory keys (Fl through F5) are pressed.

Chapter 19

void send_macro (String F Key data)

char send_data[buflen);

int i = 0;

II Function to Send the Macro data

lcd.print(F Key_data); II Display the Memory Key data on the LCD

II Fill the character a rray with each character in the macro

II one character at a time

while (i <= F_Key_data.length() - 1)

{

send_data[i)

i++;

F Key data.charAt (i);

II Add a zero at the end of the array to signify end of text

send_data[i) = O;

II send the dat a in the send data array as a message

morse.sendmsg(send_data);

The mode set () function is used to select either audio tone or keying
mode:

void mode set () II Function to Set the mode to beep or keying

if (morse_beep)

Morse morse (beep_pin , key_speed, one); //default to beep on pin 11

else {

Morse morse(ke y_pin , key speed , zero) ; //de fault to key on pin 12

Finally, as a debugging aid, we include the get free memory ()
function from the Arduino Playground to give us the amount of free RAM
remammg:

int get_free_ memory() // Function to get free memory

int free_memory;

if((int) brkval == 0)

free_memory ((int) &free_memory) - ((int)& bss end);

else

free_memory ((int) &fr ee_memory) - ((int) brkval);

return free_memory;

This project was my first experience with the Morse . h and

PS/2 CW Keyboard 19-19

ARRL1142

LS1

~ < ~ 0 M N ~ 0 m ro ~ ID ~ ~ M N ~ 0
~ ~ ~ 6 0 0 0 0 o o o o o o o o o o

I I <!:

I I
I I
I I
I I

U1
Arduino Uno R3

'-- I --=---=---=---=---=---=---=---=---=---=---=--= I U2 16x2 LCD

Figure 19.4 - PS/2 CW Keyboard schematic diagram

BT1 - 9 V battery.
01, 02 - 1 N4001 diode.
J1 - Va inch stereo mini jack.
K1 - 5 V SPST reed relay.
LS1 - 8 n mini speaker.

19-20 Chapter 19

I I

_J

0
CJ)

R3 R4
4.7 kO 4.7 kO +5 v ,__ _______ ____.

R1, R2 - 4.7 kn, Va W resistor.
51 - SPST switch.
U1 - Arduino Uno.
U2 - 16x2 serial 12C LCD.
PS/2 keyboard

0
z
(!)

To PS/2
Keyboard

DIN
Connector

PS2Keyboard. h libraries. They were also the first libraries I had to dig
into and modify. The Morse. h library had a couple of encoding errors
with some of the Morse code characters, which were easily resolved. The
PS2Keyboard. h library did not support some of the extended characters
such as INSERT, END, and the Fl through F12 Keys. It was relatively easy to

Figure 19.5 - Inside view of the PS/2 CW Keyboard.

Figure 19.6 - The flexible keyboard I use with the PS/2 CW Keyboard for
portable operation.

Figure 19.7 -The
PS/2 CW Keyboard
unit rolled inside
the flexible
keyboard, ready for
next Field Day.

PS/2 CW Keyboard 19-21

19-22

make the necessary changes in the library to add the necessary functions. The
moral of the story is, don't be afraid if a library doesn't do exactly what you
need it to, or if it has a bug. Most libraries are almost as easy to troubleshoot as
Arduino sketches and the majority of your standard Arduino troubleshooting
techniques can be used while working with libraries.

Once I had everything working and debugged on the breadboard, the
protoshield was wired up according the schematic diagram in Figure 19.4,
and the finished project was mounted in a SparkFun pcDuino/ Arduino project
enclosure (Figure 19.5). I was able to find an older flexible keyboard (Figure
19.6) with a USB connector that would work with a USB to PS/2 adapter,
allowing the whole project to be rolled up inside the keyboard (Figure 19.7)
and thrown into the Field Day kit. The newer USB keyboards won't work with
the USB to PS/2 adapter, so you'll need to dig up an older USB keyboard or add
a USB host shield if you want to use a USB keyboard with this project.

Enhancement Ideas
With the low number of external components, this project would easily fit

inside a smaller enclosure such as a mint tin or similar small enclosure. You
could use an Arduino Nano and an organic LED (OLED) display to shrink this
into a project you could carry in your pocket. If you'd prefer not to use a PS/2-
style keyboard, you could use an Arduino Uno with the USB host shield and a
standard USB keyboard. You could also optimize the memory utilization and
give yourself more CW memory function keys by moving all of the constant
variables into the Arduino flash memory using the F () macro or the PROGMEM

statement with the avr /pgmspace. /h library.
And the best part of this whole project: now I can send near-perfect CW and

nobody has to know how bad my CW sending ability really is. I've had a lot of
fun with the PS/2 CW Keyboard in contests, where I've had a lot of the required
contest exchange and CQs stored in the memory function keys, allowing me
time to log the contact on the computer while the keyboard is off sending CQ,
looking for the next contact.

References

Chapter 19

Arduino - www.arduino.cc
Arduino Playground - playground.arduino.cc
CadSoft - www.cadsoftusa.com
Fritzing - www.fritzing.org
SparkFun Electronics - www.sparkfun.com

CHAPTER 20

Field Day Satellite Tracker

\ .
.. :\' .,,...... ..

:\,
·::\

The finished Field Day Satellite Tracker being controlled by SatPC32.

The Field Day Satellite Tracker was the second major Arduino project I
attempted. The Satellite Tracker described here provides azimuth and elevation
rotation for a pair of model satellite antennas to demonstrate how the tracking
software and automatic antenna positioning work. The Satellite Tracker uses
SatPC32 satellite tracking software and follows actual amateur satellites, just
like a real antenna system. It was originally created as a proof-of-concept
prototype for a full -scale satellite azimuth and elevation controller for my Yaesu
G5400 satellite antenna rotator. Somewhere along the way, the project took on a
life of its own and our club has used it at many of our outdoor and public events
such as ARRL Field Day and ARRL Kids Day.

At our club's last ARRL Kid's Day event, we had both the Satellite Tracker
and a full -size satellite antenna array up and running with its own Arduino-based

Field Day Satellite Tracker 20-1

controller, tracking satellites side by side. It was an awesome sight to see the
little tracker start to move and look up to see the real antenna tracking satellites
right along with it. Whenever the tracker started to move, everyone made their
way to the satellite station's tent to hear us trying to work the satellites.

This is yet another project that shows the versatility of the Arduino. The
Satellite Tracker interfaces with a PC running the SatPC32 software to do the
actual tracking, and uses the RS-232 satellite rotator control output from the
tracking software to drive a pan/tilt servo assembly that moves the antenna
model mounted on top of the pan/tilt servo head. As far as the PC software
is concerned, it thinks it's communicating with the Yaesu GS-232A azimuth/
elevation (az/el) rotator computer interface, when in actuality it is talking to an
Ardweeny that is emulating the Yaesu GS-232A and driving the servos based
on the rotator movement commands coming from the PC. We'll also display
the current positioning information on a 16-character by 2-line LCD display
mounted in the base of the enclosure. Figure 20.1 shows the block diagram.

20-2 Chapter 20

We'll be using a pair of servos similar to the one shown in Figure 20.2 to

I 16x2 I2C LCD I
'l

PC
Ardweeny RS232 In

---~--'"'--'"- I

ARRL1143

Figure 20.1 - Field Day Satellite Tracker block diagram.

Figure 20.2 - The servos used in
the Satellite Tracker's pan/tilt servo
assembly.

Azimuth I
Servo

~~ --

-,. Elevation
Servo

rotate and tilt our antenna model. Servos are small, powerful, geared motor
assemblies often used in robotics and radio controlled models that use the
width of a pulse on a digital I/O pin to determine how far they should rotate.
Servos are very accurate and move quickly to the desired position. Your typical
servo has a range of travel from 0 to 180°. This is fine for elevation rotator
positioning, but we need a range of 0 to 360° for azimuth rotation if we're going
to get the PC to think we're a real rotator. Since the standard servos don't have
that range of motion, we'll use a model sailboat multiple tum "sail winch"
servo. The sail winch servo works on the same principle as a regular servo,
except that it can tum up to seven full rotations, which makes it perfect for the 0
to 360° rotation we'll need for the azimuth portion of the Satellite Tracker.

Circuit Highlights
This project is built using a Solarbotics Ardweeny, shown in Figures 20.3

and 20.4. The Ardweeny uses the same Atmel ATmega328 processor used
in the Arduino Uno, except the supporting components are mounted on a
backpack-style circuit board that is soldered directly to the pins on the ATmega.
This gives you the equivalent of an Arduino Uno that has a very small footprint
and fits in a standard 28 pin IC socket. The Ardweeny does not have a USB

Figure 20.3 - The Solarbotics Ardweeny.

Figure 20.4 - Top view of the Ardweeny showing the pin
layouts.

Field Day Satellite Tracker 20-3

C2
1µF/16V

cs
1 µF/16V

C3
1 µF/16V
C4
1µF/16V
C1
1 µF/16V

J1
+12Vdcln

J2
RS232

TxD

port for programming. Instead, the Ardweeny requires the FfDI USB-to-TTL
serial module (Figure 20.5) to allow your workstation to communicate with the
Arduino. Since the PC I would be using to run the SatPC32 satellite tracking
software had an RS-232 port, I chose to use the Ardweeny so that I could
connect the Ardweeny to the PC's RS-232 port using a MAX232 RS-232-to
TIL converter chip. Lastly, the Ardweeny does not have an onboard power
regulator, so we will also need an external source of 5 V to power the project.

Figure 20.6 shows the Fritzing diagram for the Field Day Satellite Tracker
project. The PC interfaces to the Ardweeny using a MAX232 RS-232-to-TIL

01
1N4001

U4
16x2 12C LCD

C7
0.1µF
16V

-
U1
Ardweeny

Satellite Tracker

Figure 20.5 - The FTDI
USB-to-serial adapter
module.

Z1 Z2

ARRL 1144

Figure 20.6 - Field Day Satellite Tracker Fritzing diagram.

20-4 Chapter 20

serial converter that attaches to the hardware serial port on the Ardweeny. For
power, a small 12 V, 5 Ah gel cell battery attaches to the bottom of the project
enclosure using hook-and-loop fastener strips and plugs into a de power jack
on the side of the enclosure. This makes the entire project portable and self
powered, which is perfect if you use a laptop PC to run the tracking software.
The servos are controlled by a 5 V pulse on the data line, so they can be driven
directly from the Ardweeny's digital I/O pins. We'll finish things up using a
16-character by 2-line LCD display with an PC "backpack" that communicates
with the Ardweeny using the PC bus.

The Sketch
With everything assembled on the breadboard, we can begin to write the

sketch. When you break the sketch down into a flowchart (Figure 20.7), you'll
see this really isn't a difficult sketch to create. Since the Satellite Tracker looks
exactly like a Yaesu GS-232A azimuth/elevation rotator controller as far as
the PC software is concerned, the key is determining the format of the RS-232
commands the PC will send to the Ardweeny. The Ardweeny will decode the
desired azimuth and elevation information from the RS-232 commands and
translate the commands into servo positioning information. This is done by
mapping the desired azimuth and elevation from degrees into pulse widths to
drive the servos. The Arduino IDE's built-in Servo. h library will handle the
actual positioning of the servos based on the pulse width needed to rotate the

Start

Include Libraries
Define Pins and Variables

Define LCD
Define Servos

- -
'

Setup

Setup Digital 1/0 Pins
Initialize LCD

Initialize Servos

Loop

Read Serial Port
Decode Command String

Move Azimuth and Elevation Servos
, __

ARRL 1145

Figure 20. 7 - Field Day Satellite
Tracker flowchart.

l

I

Field Day Satellite Tracker 20-5

servos to the desired position.
Starting out with the sketch, we'll include the Servo. h, Wire.hand

LiquidCrystal _ I2C libraries we'll need for the servos and the LCD
display. We'll also initialize the LCD and servo objects:

#include <Servo.h> II Use the Servo Library

#include <Wire.h> II Use the I2C Communication Library

#include <LiquidCrystal I2C.h> II Use the LiquidCrystal I2C Library

LiquidCrystal I2C lcd(Ox27,16,2); II set the LCD address to Ox27 for a 16 chars

and 2 line display

Servo myservoAZ; II create servo object to control Azimuth servo

Servo myservoEL; II create servo object to control Elevation servo

Next we'll define the variables and constants we'll need for the sketch.
The values used for the servo positions are determined manually and will be
different from one servo to another. Adjust these values until your servos are
positioning correctly. The SatPC32 software has the ability to send positioning
commands manually, so you can command the servos to go to 0 and 360° and
modify the values accordingly.

II Set the Azimuth Servo pulse width for 0 Degrees

int min servo_pulse = 900;

II Set the Azimuth Servo pulse width for 360 Degrees

int max servo_pulse = 1970;

II Set the Elevation Servo pulse width for 0 Degrees

int EL_Min_pulse = 640;

II Set the Azimuth Servo pulse width for 180 Degrees

int EL_Max_pulse

int delayl = 50;

int delay2 = 5000;

2340;

int currentEL = O; II Variable to hold the current elevation

int currentAZ = O; II variable to hold the current azimuth

int inByte; II t he incoming byte on the Serial port

II Flag to indicate we are decoding a move command

boolean move command false;

int byte count= O; II the number of bytes received on the Serial port

char az_buffer[4]; II Holds the decoded azimuth command

char el_buffer[4]; II Holds the decoded elevation command

char rotor_buffer[lO]; II The incoming Rotor command data

int set az, set el; II Holds the desired azimuth and elevation data

20-6 Chapter 20

In the setup () loop we initialize the LCD and have it display a brief
startup message so we know everything is working. Then we'll initialize the
servos, start the serial port for communication with the PC, and then move both
servos to the 0° "home" position.

lcd .init(); II initialize the LCD

lcd.backlight(); II Turn on the LCD backlight

lcd.setCursor(0,1);

lcd.print("KW5GP SatTrack");

lcd.setCursor(O, 0);

lcd.print("Rotor Controller");

delay(delay2);

II attaches the servo on pin 9 to the Azimuth servo object

myservoAZ.attach(9);

II attaches the servo on pin 10 to the Elevation servo object

myservoEL . attach(lO);

pinMode(13, OUTPUT) ; II initialize the pin 13 as an output.

Ser~al.begin(9600); II Start the Serial Port at 9600 baud

led.clear();

lcd.setCursor(O, 0);

lcd.print("Homing Servos ");

set azimuth(O) ; II Set the Servos to 0 degrees

set elevation(O);

l cd . setCursor(0 ,1);

lcd.print("Elevation: 0,,) ; II Display the current

lcd.setCursor(O, 0) ;

lcd.print("Azimuth 0,,) ; II Display the current

delay(delay2);

Elevation

Azimuth

In the main loop () , we wait until a character is received on the serial port
connected to the PC:

if (Serial.available()}

inByte =Serial.read();

Serial . write(inByte);

II read data from the Serial Port

We then check to see if the first character is a "W," which is the Yaesu
GS-232A command to move the rotator to the desired azimuth and elevation.
The full command we'll be decoding is "Waaa eee," where aaa is the desired
azimuth in degrees, and eee is the desired elevation in degrees. If it is a "W," we
enable the sketch logic to decode the rest of the command string.

Field Day Satellite Tracker 20-7

if (inByte == 87) II If the incoming data i s a " W", it ' s a rotor move command

II Turn on string build - next 7 chars

move command = true ;

byte count O;

azimuth and elevat ion

If it is not a "W," we'll start building the strings for the azimuth and
elevation data from the incoming characters if we have already received a "W."
If not, the character is ignored and the sketch continues to monitor the serial
port waiting for the "W" command. We continue to build the azimuth and
elevation strings until we have received a total of eight characters, the length of
the complete move command.

II If it's not a move command - add to string if we ' re building

if (move command and inByte !=87

rotor_buffer[byte count] = char (inByte);

byte_count = byte_count + l;

if (byte count <= 3) II The first 3 character s are Azimuth
{

az_bu ffer[byte count - 1] = char(inByte) ;

II The last 3 characters are Elevation

if (byte count >= 5 and byte count <= 7)

el_buffer[byte count - 5] = char (inByte);

II Once we have 8 characters , we have a complete move command

if (byte count == 8)

II Convert the Azimuth data to an i nteger

set az = atoi(az_buffer) ;

II Convert the Elevation data to an integer

set el= atoi (el_buffer);

II Move the Azimuth Servo to desired position

set_a zimuth (set_ az) ;

lcd. setCursor(ll , 0) ;

lcd.print(set_az); II Display the New Azimuth on the LCD
led.print(" ");

II Move the Elevation Servo to desired position

set_elevation(set_el) ;

lcd.setCursor (ll,1);

lcd.print(set el); II Display the New Elevation
led.print(" ");

20-8 Chapter 20

move command false; II Indicate we're done with this move command

The servo positioning is performed by the set azimuth and set
elevation functions found after the main loop () in the sketch. These
functions will use the map () statement to convert the decoded positioning
information from degrees into the pulse widths the servos need to perform the
actual positioning.

II Set Azimuth Funtion

II Moves the Az imuth Servo to desired position

void set_azimuth(int desired_az)

int move azimuth;

II Map the desired position to the correct Azimuth servo pulse width

move_azimuth = map(desired_az,360, O,min servo_pulse,max_servo_pulse);

II Send the Servo position pulse to the Azimuth servo

myservoAZ.writeMicroseconds(move_azimuth);

delay(delayl); II Wait for move to comp l ete

II Set Elevation Function

II Moves the Elevation Servo to desired position

void set elevation(int desired_el)

}

int move elevation;

II Map the desired position to the correct Elevation servo pulse width

move_elevation = map(desired_el,O, 180,EL_Min_pulse,EL_Max_pulse);

II Send the Servo position pu lse to the Elevation servo

myservoEL.writeMicroseconds(move_elevation);

delay(delayl); II Wait for move to complete

Once everything was working on the breadboard, the schematic for the
circuit (Figure 20.8) was drawn up, the circuit was soldered up on a perfboard,
and the finished board was mounted inside a 2 x 4 x 6 inch RadioShack project
enclosure as shown in Figures 20.9 and 20.10. The 16-character by 2-line LCD
is mounted inside the top lid of the enclosure along with the sail winch servo
for the azimuth rotation. The pan/tilt servo assembly for elevation is mounted
to the sail winch servo using a 4 inch section of threaded aluminum tubing I
found at a local hobby shop. A model of a satellite antenna array was built out
of wooden dowels and toothpicks, painted silver to make it look like the real
thing, and mounted on top of the pan/tilt servo assembly. Figure 20.11 shows
the completed Satellite Tracker with its model antennas.

Field Day Satellite Tracker 20-9

6 7 8 9

Figure 20.8 - Field Day Satellite Tracker schematic diagram.

C1 -C5 - 1 µF, 16 V capacitor.
CG - 0.33 µF, 35 V capacitor.
C7 - 0.1 µF, 16 V capacitor.
D1 - 1 N4001 diode.
J2 - DB9 male connector.
J1 - DC power jack.
R1, R2 - 4.7 k.O, 1la W resistor.
S1 - SPST toggle switch.

ARRL1146

U1 - Solarbotics Ardweeny.
U2 - MAX232 RS-232 transceiver.
U3 - LM7805 5 V regulator.
U4 - 16x2 12C LCD.
Z1 - 7 turn sail winch servo.
Z2 - Small standard servo.
Pan/tilt servo bracket
Radio Shack project enclosure (270-1806)

On the PC side of things, all you have to do is configure SatPC32's rotator
setup to use a Yaesu GS-232A on the desired serial port at 9600 baud, connect
up the Field Day Satellite Tracker, and you should be good to go. Be sure to
select the Yaesu GS-232A and not the GS-232B as the GS-232B uses a slightly
different format for the positioning commands.

20-10

If you get a serial port error and SatPC32 is trying to connect to the wrong
serial port, there's no easy way to change the serial port in the software. You'll
need to edit the Documents and Settings\%User%\Application Data\SatPC32\

Chapter 20

Figure 20.9 - Inside view showing the Ardweeny and support
components.

Figure 20.10 - Close-up view of the Satellite
Tracker's LCD display.

SDX\SDXParam.SQF file to change the settings manually. The first line in this
file is the COM port number and the second line is the baud rate, which must
be 9600 unless you change the baud rate setting in the sketch to match the PC
baud rate setting.

Enhancement Ideas
When this project was originally designed, I was unaware that the Arduino

Nano had an onboard voltage regulator. The Ardweeny could easily be replaced
with a Nano, or even an Uno with a protoshield mounted inside the enclosure,
and the external 5 V regulator portion of the circuit eliminated entirely. You
could also replace the RS-232 interface and use the Nano or Uno's onboard
USB port for the serial link to the software.

The sketch for this project was written for SatPC32 and will not work with
Ham Radio Deluxe (HRD) as it is currently coded. This is due to the fact that

Field Day Satellite Tracker 20-11

20-12

Figure 20.11 - The finished Field Day Satellite Tracker

SatPC32 doesn't look for any response from the Ardweeny; it just sends the rotator
control commands and assumes the controller executed them. HRD does a two
way handshake with the controller and expects a response to the rotator control
commands. The sketch could be easily modified to respond back to HRD with the
positioning information, allowing you to use the satellite tracking portion of HRD
to control the Tracker. One thing to keep in mind, when HRD initially connects
to the rotator controller, it toggles the DTR signal line on the USB interface. The
Arduino Uno and Nano interpret this as a RESET command and resets the Arduino.
As you will see in the full-scale rotator controller projects, adding a capacitor and
a jumper block to the reset line will allow you to enable the auto-reset for loading
your sketch and then disable it for use with Ham Radio Deluxe.

References

Chapter 20

Atmel Corp - www.atmel.com
RadioShack - www.radioshack.com
SatPC32 software - www.dkltb.de
Solarbotics - www.solarbotics.com
Yaesu - www.yaesu.com

CHAPTER 21

Azimuth/Elevation Rotator
Controller

Yaesu G-54008 azimuth/elevation dual rotator controller.

Based on the success of the Field Day Satellite Tracker prototype, the next
logical step is to build a full-scale Arduino controller for the actual Yaesu
G5400/5500 series azimuth/elevation (az/el) rotator using either SatPC32 or
Ham Radio Deluxe (HRD). For automatic operation, the Yaesu G5400/5500
series rotator controllers are designed to work with the Yaesu GS-232 rotator
computer interface. There are several different models of the GS-232 with slight
differences among them. For this project, shown in Figure 21.1, we will be
emulating the Yaesu GS-232A interface.

The Yaesu G5400/5500 series dual rotator controllers have a built in 8-pin
DIN connector labeled EXTERNAL CONTROL (Figure 21.2). This connector
provides an analog voltage output for the azimuth and elevation values, and
relay control inputs for azimuth and elevation control. Ordinarily you would
connect the Yaesu GS-232 rotator computer interface unit to this connector,
but we're going to replace the GS-232 with an Arduino and have the Arduino
emulate the GS-232 interface. We'll use the Arduino's USB port to interface
with SatPC32 or Ham Radio Deluxe on the PC side of things. We'll also be
using the Arduino's onboard EEPROM to save our calibration settings. This
way, the Azimuth/Elevation Rotator Controller will remember the calibration
data even after a reset or power-off.

Azimuth/Elevation Rotator Controller 21-1

Figure 21.1 - Inside view of the Azimuth/Elevation Rotator Controller.

FUUSCALE
ADJ

0
OUT VOLTAGE
ADJ

0 •

Figure 21.2 - Rear view of the Yaesu G-54008 rotator controller
showing the External Control 8-pin DIN connector.

Figure 21.3 shows the block diagram for this project. The external hardware
needed is minimal, comprising six resistors, four transistors, a capacitor, and
a Texas Instruments ADSll 15 4-channel, 16-bit 12C analog-to-digital (AID)
converter. You could use the Arduino's built in 10-bit AID converter instead of
the ADS 1115, but you will not have the resolution that the extra six bits of the
ADS1115 provides. The Arduino's AID converter would only read three AID
counts per degree of rotation, versus the 148 AID counts per degree with the
ADSl 115. Any noise on the positioning signals could cause positioning errors.
Since we're tracking satellites, it's worth using the 16-bit AID to get the extra
accuracy.

21-2 Chapter 21

ARRL1147

Yaesu
G5xxx
Rotator

Rotator Drive

Position Sense ~
Yaesu 1 USB

G5xxx Port PC
Arduino Uno - - Running

Rotator - -
Control Box

HRD orSatPC

'
Rotator Drive J
Position Sense l .

GS-232 Rotator Control
Emulator -·-
Interface Position Sense

Figure 21 .3 - Azimuth/Elevation Rotator Controller block diagram.

The Texas Instruments ADS1115 AID Converter

Figure 21.4 - The Texas Instruments
ADS1115 4-channel 16-bit analog-to
digital converter module.

The Texas Instruments ADS 1115 (Figure 21.4)
communicates with the Arduino using the PC bus. The
analog inputs can be configured as four single-ended inputs
or two differential inputs, with the input gain program
selectable in six steps from 256 m V all the way up to
6.144 V. It is important to note that the 6.144 V gain setting
is only used as a range on the AID converter. At no time
should a voltage higher than V DD+ 0.3 V (5.3 V) ever be
used as an analog input to the AID, otherwise you may
damage the chip. The sampling rate is program-selectable
in eight steps from 8 to 860 samples per second, along with
a single-shot conversion mode. Because of the ADS1115's
flexibility and ease of interfacing, it has become my AID
converter of choice when I need higher resolution than the
Arduino's onboard 10-bit AID converter.

Building the Hardware
Since the G5400/G5500 rotator controller already has most of the interface

circuitry we'll need built-in, constructing the Arduino portion of the interface
on the breadboard should go quickly. Figure 21.5 shows the Fritzing diagram
for this project. Note that we don' t need relays to drive the rotator controller.
The Yaesu rotator controller already has the control relays (with clamping
diodes) built-in and connected to the external control connector, so all we need

Azimuth/Elevation Rotator Controller 21-3

Disable

ARRL 1148

C1
1µF

Azimuth/Elevation Rotator Controller

r-1
I R4

R5

~ 4700

-~oe-::::0:::;===11

R3
4700

R2
4700

4.7k0 ----~""---=
_.....,.. R1

4700

R6
4.7k0

04
2N2222A

03
2N2222A

~·-······--~---- --~

02
2N2222A

------- _..J.__

I

J2

To Yaesu

L---~~-~-~-~-~·-~~~~~- t:=~---_J Controller

Figure 21.5 - Azimuth/Elevation Rotator Controller Fritzing diagram.

to do to drive the rotator is use a transistor for each rotator control pin. From
your breadboard, you can build an 8-pin header-to-DIN-plug adapter cable
to connect to the external control socket on the Yaesu controller. When you
move the project to the protoshield, you can use an 8-pin header on the board
to connect the DIN plug adapter cable you've already built. We'll power the
Azimuth/Elevation Rotator Controller from the Arduino's USB connector that
attaches to your PC, so we won't need an external source of power for this
project.

Do not connect the Yaesu rotator controller to your breadboard circuit until
you have calibrated the output voltages on the external control pins. First, use
the Yaesu rotator controller to manually position the antenna to full scale for
azimuth and elevation. Using a voltmeter, measure the voltage between the
ground pin (pin 8) and elevation voltage pin (pin 1). Adjust the ELEVATION OUT

VOLTAGE ADJ potentiometer on the back of the rotator controller for 5 V. Do
the same for the azimuth voltage pin (pin 6) and the AZIMUTH OUT VOLTAGE ADJ

potentiometer. Do not connect the DIN connector to your breadboard until you
have completed this procedure, otherwise you could send a voltage higher than
5 V to the ND converter and damage it. When you have completed the output

21-4 Chapter 21

voltage calibration, you should be able to rotate your azimuth and elevation
rotators and see the output change from 0 to 5 V on each of the voltage output
pins as you rotate the antenna from zero to full scale on the front panel meters.

The Sketch
When I initially began working with the TI ADS 1115 AJD converter, the

ADS 1115 . h and I 2 Cdev. h libraries did not handle the 16-bit data coming
from the ADSl 115 correctly. I had to modify these libraries to correct this
issue. Be sure to use the ADS 1115 . h and I 2 Cdev. h libraries in Appendix A
or download them from www.wSobm.us/Arduino.

Before you can load your sketch, you will need to be sure that the jumper
that ties the 1 µF capacitor (Cl) to the Reset pin is off. This capacitor is used
to block the Reset command that Ham Radio Deluxe accidentally sends to the
Arduino when it toggles the DTR signal line as it begins a connection attempt
to the rotator controller. If you forget to short this jumper after loading your
sketch, Ham Radio Deluxe will not be able to connect to the controller since
the controller will be resetting while HRD is trying to connect to it. However,
you do want to enable the DTR Reset when you load sketches, so be sure and
remove the jumper before trying to load your sketch.

Next it's time to plan out the sketch. Figure 21.6 shows the flowchart for
the sketch and Table 21.1 shows the actual Yaesu GS-232A commands that we
will be implementing. This sketch will use many of the tools and techniques
we've learned from the previous projects. For example, we'll be using the
Texas Instruments ADSl 115 to read the position voltages and we will be saving
the position calibration values in the Arduino's onboard EEPROM. Using the
Arduino's USB port, we will communicate with the satellite tracking software
on the PC. To aid in troubleshooting, we will also implement a debug mode
in the sketch, that when set, will return diagnostic information to the Arduino
IDE's Serial Monitor.

Table 21.1
Azimuth/Elevation Rotator Controller Commands
(Subset of Yaesu GS-232A Commands)
A Stop Azimuth Rotation
B Return Current Elevation Value in Degrees (format +Oeee)
C Return Current Azimuth Value in Degrees (format +Oaaa)
C2 Return Current Azimuth and Elevation (format +Oaaa+Oeee)
D Rotate Elevation Down
E Stop Elevation Rotation
F Set Azimuth Full Scale Calibration
F2 Set Elevation Full Scale Calibration
L Rotate Azimuth Counter-Clockwise
Maaa
0
02
R
s
u
Waaa eee

Rotate Azimuth to aaa degrees
Set Azimuth Zero Calibration
Set Elevation Zero Calibration
Rotate Azimuth Clockwise
Stop All Rotation
Rotate Elevation Up
Rotate Azimuth to aaa degrees and Elevation to eee degrees

Azimuth/Elevation Rotator Controller 21-5

21-6

Start

Include Libraries
Define Pins and Variables

Define ADC

Setup

Setup Digital 1/0 Pins
Initialize 12C Bus

Initialize ADC
Read EEPROM Calibration

Data
Initialize Serial Port

Loop

Read Serial Port
Decode Command

Yes

Yes

Perform Rotate Function

Return Requested
Position Information

Via Serial Port

Perform Requested Calibration
Save Calibration Data to

EE PROM

Figure 21.6 - Azimuth/Elevation Rotator Controller flowchart.

Chapter 21

ARRL11 49

From the flowchart, you can see that in the main loop () we decode the
command string from the tracking software on the PC into three basic groups
of functions: status requests, calibration commands, and movement commands.
By using this divide and conquer method, we break the sketch down into
manageable chunks that can be independently created and debugged. The
complete sketch and libraries can be found in Appendix A or online at www.
w5obm.us/ Arduino.

Starting out in the sketch, we'll define the libraries and the ADSl 115 object.
We also include a definition for the debug mode. When this definition is set to a
"1", debug information will be sent to the Arduino IDE's Serial Monitor.

#define debug_ mode 0 I I Set to 1 for debug data on Serial Port

#include <Wire.h> II Include the I2C Communication Library

#include <EEPROM.h > II Include the EEPROM Library

II Include the ADS1115.h Library (Library Updated to fix errors)

#include "ADS1115.h"

II Include I2Cdev.h Library (Library Updated to fix errors)

#include "I2Cdev.h"

ADS1 1 15 adc ; II Define the ADS1115 as adc

Next, we'll define the Arduino digital 1/0 pins used to control the antenna
rotation and the baud rate for the serial port used to interface with the tracking
software on your PC. The baud rate in the sketch must match the baud rate you
have set in the tracking software on your PC.

#define rotate up 3 II Define Rotate Up as Pin 3

#define rotate down 2 II Define Rotate Down as Pin 2

#define rotate left 4 II Define Rotate Left as Pin 4

#define rotate right 5 II Define Rotate Right as Pin 5

#define BAUD RATE 9600 II Set the Serial Port Baud rate to 9600

Since we will be storing the positioning calibration data in EEPROM, we
will need to define the format we will be using to read and store the EEPROM
data.

II EEPROM ID to validate EEPROM data location

#define EEPROM ID BYTE 1

II EEPROM ID Value

#define EEPROM ID 55

II Azimuth Zero Calibration EEPROM l ocation

#define EEPROM AZ CAL 0 2
- - -

II Azimuth Max Calibration Data EEPROM location

Azimuth/Elevation Rotator Controller 21-7

#define EEPROM AZ CAL MAX 4

II Elevation Zero Calibration Data EEPROM location

#define EEPROM EL CAL 0 6

II Elevation Max Calibration Data EEPROM location

#define EEPROM EL CAL MAX 8

In case there is no calibration data stored in the EEPROM, default values
are defined, along with a "tolerance" value for the rotator positioning. The
tolerance is a value in degrees that the controller can use to determine that the
current rotator positioning is within the tolerance range to the desired position.
The tolerance value is designed for use when you have excessive noise on the
positioning signals and want to prevent rotation when the desired position and
the actual position are calculated to be a few degrees apart from each other. In
practical use, a tolerance of 0 works well in my shack.

II Preset the Azimuth Zero Calibration Point to 0

#define AZ CAL 0 DEFAULT 0

II Preset the Azimuth Max Calibration Point to 27000

#define AZ CAL MAX DEFAULT 27000

II Preset the Elevation Zero Calibration Point to 0

#define EL CAL 0 DEFAULT 0

II Preset the Elevation Max Calibration Point to 27000

#define EL CAL MAX DEFAULT 27000

#define AZ Tolerance 0 II Set the Azimuth Accuracy Tolerance

#define EL Tolerance 0 II Set the Elevation Accuracy Tolerance

Next, we'll define all the variables used in the sketch:

byte inByte = 0; II incoming serial byte

byte serial_buffer[50]; //incoming serial byte buffer

II The index pointer variable for the Serial buffer

int serial buffer index = O;

int set -
int set -

AZ;

EL;
II
II

Azimuth set value

Elevation set value

II Current Azimuth raw value

int current EL; //Current Elevation raw value

int current AZ; -

String Serial Send_Data; // Data to send to Serial Port

int AZ O; //Azimuth Zero Value from EEPROM

int AZ MAX; //Azimuth Max Value from EEPROM

int EL 0; //Elevation 0 Value from EEPROM

int EL_MAX; //Elevation Max Value from EEPROM

int AZ_Degrees; II mapped AZ ADC value to Degrees

int EL_Degrees; //mapped EL ADC value to Degrees

String Requested_AZ; II RS232 Requested Azimuth - Mand short W command

String Requested_EL; //RS232 Requested Azimuth and Elevation - Full w command

21-8 Chapter 21

int AZ To; II Requested AZ Move -

int EL To; II Requested EL Move

int AZ Distance; II Distance to move AZ
int EL Distance; II Distance to move EL -

In the setup () loop, we'll initialize the digital 1/0 pins and make sure that
all the position control outputs are off:

pinMode(rotate up, OUTPUT); //Define the Control Pins as Outputs

pinMode(rotate_down, OUTPUT);

pinMode(rotate left, OUTPUT);

pinMode(rotate right, OUTPUT);

digitalWrite(rotate up, LOW); II Turn off all the Control Pins

digi talWrite(rotate down, LOW);

digitalWrite(rotate left, LOW);

digitalWrite(rotate right, LOW);

Now we'll initialize the serial port, the PC bus, and the ADS 1115 AID
converter:

Serial.begin(BAUD RATE); //initialize serial communication

Wire.begin(); //join I2C bus

adc.initialize(); //initialize ADS1115 16 bit A/D chip

Wire.beginTransmission(Ox48); //Begin direct ADC communication

II Connect to adc and send two bytes - Set Config Reg to all Ones

II We do this so when we read the ADC we can be sure we're

II communicating correctly

Wire.write(Oxl);

Wire.write(Ox7F); //

Wire.write(OxFF); II
Wire.endTransmission();

MSB

LSB

II End the direct ADC Communicat i on

As the final step of initializing the AID converter, we'll set it to free-running
single-ended mode at 4 7 5 samples per second, with a range of 0 to 6.144 V.

II Set the ADC to free running conversion mode

adc.setMode(ADS1115_MODE CONTINUOUS);

II set the ADC gain to 6.144 Volt range, .0001875 Volts/step

adc.setGain(ADS1115 PGA 6Pl44);

II set ADC sample rate to 475 samples per second

adc.setRate(ADS1115_RATE 475);

Azimuth/Elevation Rotator Controller 21-9

II Set the ADC to ANO+ Vs ground Mode (single-ended)

adc.setMultiplexer(ADS1115_MUX_PO_NG);

Set AZ

As the last step in the setup () loop, the move flag variables are set to -1
to indicate that there is no active rotation command, and the calibration values
(if any) are loaded from EEPROM.

- 1 ; II Preset the Azimuth and Elevation Move Variables

set EL - 1;

II Read the Azimuth and Elevation Calibration Values from EEPROM

read_eeprom_cal data();

The main loop () for this sketch is rather unique. It consists of only two
statements. The divide and conquer design strategy for this project resulted in
the majority of the work being handled by functions . All the main loop does
is continually check for incoming commands on the serial port, decode and
execute any commands it receives, and handle any commands involving move
commands. Each decoded command will call a function to perform the action
called for by the incoming command.

Check_ serial(); II Check the Serial Port for Data

check_ move(); II Check to see if executing move command

The majority of this project is controlled by the various functions . As part
of the setup () loop, the read_ eeprom _cal data () function is called
to load the saved calibration data into the sketch variables. This function checks
to see if there is a valid EEPROM ID byte and loads the EEPROM data into the
sketch variables if the ID is valid. If the EEPROM ID is not valid, the sketch
calibration variables are loaded with the defined default values and saved to
EEPROM. If the debug mode is enabled, the ID E's Serial Monitor will display
the values read from the EEPROM.

II Function to Read the Azimuth and Elevation Calibration Data

void read_eeprom_cal_data()

II Verify the EEPROM has valid data

i f (EEPROM.read(EEPROM_ID_BYTE) == EEPROM_ID)

if (debug_mode) II If in Debug Mode Print the Calibration Values
{

Serial.println("Read EEPROM Calibration Data Valid ID");

Serial.println((EEPROM.read(EEPROM_AZ CAL 0) * 256) + EEPROM.read(EEPROM_
AZ_ CAL 0 + 1),DEC);

Serial.println((EEPROM.read(EEPROM_AZ CAL_MAX) * 256) + EEPROM .
read(EEPROM_AZ CAL_MAX + 1),DEC);

Serial . println((EEPROM.read(EEPROM_EL CAL 0) * 256) + EEPROM . read(EEPROM
EL CAL_O +1),DEC);

Serial.println((EEPROM.read(EEPROM_EL CAL_MAX) *256) + EEPROM.read(EEPROM_

21-10 Chapter 21

EL_CAL_MAX + l),DEC);

}

II Read the Azimuth Zero Calibration Value from EEPROM

AZ 0 = (EEPROM.read(EEPROM_AZ_CAL 0)*256) + EEPROM.read(EEPROM_AZ CAL 0 +
1) ;

II Read the Azimuth Maximum Calibration Value from EEPROM

AZ_MAX = (EEPROM.read(EEPROM_AZ CAL_MAX)*256) + EEPROM.read(EEPROM AZ CAL
MAX+ l);

II Read the Elevation Zero Calibration Value from EEPROM

EL 0 = (EEPROM.read(EEPROM_EL_CAL 0)*256) + EEPROM.read(EEPROM EL CAL 0 +
1) ;

II Read the Elevation Maximum Calibration Value from EEPROM

EL MAX (EEPROM.read(EEPROM_EL_CAL_MAX)*256) + EEPROM.read(EEPROM EL CAL
MAX+ l);

else { II initialize eeprom to default values

if (debug_mode)

{

Serial.println("Read EEPROM Calibration Data Invalid ID - setting to

defaults");

AZ 0 =AZ CAL 0 DEFAULT; II Set the Calibration To Default Values

AZ MAX = AZ CAL MAX DEFAULT; - - -
EL 0 = EL CAL 0 DEFAULT;

EL MAX = EL CAL MAX DEFAULT;

write eeprom_cal_data(); II Write the Default Values to EEPROM

The write_ eeprom _cal_ data () function is called when data is to
be saved to the EEPROM, either as part of the initial EEPROM setup, or when
a calibration command is received via the USB serial port. The 16 bit integer
values are broken into high and low order bytes and written to the EEPROM
one byte at a time.

II Function to Write the Calibration Values to EEPROM

void write eeprom_cal data()

if (debug_mode)

Serial.println("Writing EEPROM Calibration Data");

EEPROM.write(EEPROM_ID_BYTE,EEPROM_ID); II Write the EEPROM ID

II Write the Azimuth Zero Calibration High Order Byte

EEPROM.write(EEPROM_AZ_CAL_O,highByte(AZ 0));

Azimuth/Elevation Rotator Controller 21-11

II Write the Azimuth Zero Calibration Low Order Byte

EEPROM.write(EEPROM_AZ CAL_O + l,lowByte(AZ 0));

II Write the Azimuth Max Calibration High Order Byte

EEPROM.write(EEPROM_AZ CAL_MAX,highByte(AZ_MAX));

II Write the Azimuth Max Calibration Low Order Byte

EEPROM.write(EEPROM_AZ CAL_MAX + l,lowByte(AZ_MAX));

II Write the Elevation Zero Calibration High Order Byte

EEPROM.write(EEPROM_EL_CAL_O,highByte(EL 0));

II Write the Elevation Zero Calibration Low Order Byte

EEPROM.write(EEPROM_EL_CAL_O + l,lowByte(EL_O));

II Write the Elevation Max Calibration High Order Byte

EEPROM.write(EEPROM_EL_CAL_MAX,highByte(EL_MAX));

II Write the Elevation Max Calibration Low Order Byte

EEPROM.write(EEPROM_EL_CAL_MAX + l,lowByte(EL_MAX));

The check serial () function is where the serial commands from
the PC tracking software are received and decoded. The function echoes all
incoming characters back to the tracking software. This is required for the
SatPC32 rotator control program to function. If you are using Ham Radio
Deluxe to control the rotator, you may need to comment out the portion of the
sketch that echoes the command back to the PC. As each character is received,
it is added to the serial buff er until a carriage return is received.

II Function to check for data on the Serial port

void check_serial()

if (Serial.available() > 0) I I Get the Serial Data if available

inByte =Serial.read(); II Get the Serial Data

II You may need to comment out the following line if your PC software

II will not communicate properly with the controller

II SatPC32 wants the command echoed, Ham Radio Deluxe does not

Serial . print(char(inByte)); II Echo back to the PC

if (inByte == 10) II ignore Line Feeds

{

return ;

if (inByte !=13) II Add to buffer if not CR

21-12 Chapter 21

serial_buffer[serial_buffer_index] = inByte;

if (debug_mode) II Print the Character received if in Debug mode

{

Serial.print("Received = ");
Serial.println(serial_buffer[serial_buffer index]);

serial_buffer index++; II Increment the Serial Buffer pointer

else { II It's a Carriage Return, execute command

II If first character of command is lowercase, convert to uppercase

if ((serial_buffer[OJ > 96) && (serial_buffer[OJ < 123))

serial_buffer[O] serial buffer[O] - 32;

When a carriage return is received, the first character of the command is
converted to uppercase as necessary, and the function is decoded and executed.
A swi tch ... case () statement is used to decode the various commands,
and each command is executed by a function within the swi tch ... case ()
statement. If the debug mode is enabled, additional diagnostic information
will be sent to the Arduino IDE's Serial Monitor. The serial buffer
index variable indicates how many characters were received for the decoded
command, and is used to decode commands that have multiple options.

II Decode first character of command

switch (serial_buffer[O])

case 65: II A Command - Stop the Azimuth Rotation

if (debug_ mode) {Serial. println ("A Command Received") ; }

az rotate stop(); II Call the Azimuth Rotate Stop function

break;

case 66: II B Command - Send the Current Elevation to the PC

if (debug_ mode) {Serial .println ("B Command Received");}

send_current_e l(); II Call the Send Current Elevation Function

break;

The "C" command will send the current azimuth in degrees back to the
tracking software on the PC. However, this command may actually be a "C2"
command, which needs to send the current azimuth and elevation back to the
tracking software. The length of the command string as determined by the
serial buffer index variable is used to decide what information needs
to be sent back to the tracking software.

Azimuth/Elevation Rotator Controller 21-13

Case 67: II C - return current azimuth

if (debug_mode) II Return the Buffer Index Pointer in Debug Mode

Serial.println("C Command Received");

Serial . println(serial_buffer_index);

II check for C2 command

if ((serial_buffer index

if (debug_mode)

2) & (serial_buffer[l]

Serial .println("C2 Command Received");

50))

send_current_azel(); II Return Azimuth and Elevation if C2 Command

else {

send_current_az(); II Return Azimuth if C Command

break;

case 68: II D - Rotate Elevation Down Command

if (debug_mode)

Serial.println("D Command Received");

rotate_el_down(); I I Call the Rotate Elevation Down Function

break;

case 69 : II E - Stop the Elevation Rotation

if (debug_mode)

Serial.println("E Command Received");

el rotate stop(); II Call the Elevation Rotation Stop Function

break;

The "F" command is another command that can have a secondary function.
The "F" command by itself will read and save the azimuth full scale calibration
value, while the "F2" command will read and save the elevation full scale value.

Case 70: II F - Set the Max Calibration

if (debug_mode)

}

Serial.println("F Command Received");

Serial.println(serial_buffer index);

II Check for F2 Command

if ((serial buffer index 2) & (serial_buffer[l]

21-14 Chapter 21

50))

if (debug_mode)
{

Serial.println("F2 Command Received");

set_max el cal(); II F2 - Set the Max Elevation Calibration
else {

set_max_az cal(); II F - Set the Max Azimuth Calibration

break;

case 76: II L - Rotate Azimuth CCW

if (debug_ mode)

{

Serial.println("L Command Received");

rotate az ccw(); II Call the Rotate Azimuth CCW Function

break;

case 77: II M - Rotate to Set Point

if (debug_mode)

Serial.println("M Command Received");

rotate to(); II Call the Rotate to Set Point Command

break;

The "O" command is used for the zero calibration settings. An "O"
command by itself will save the azimuth zero calibration value, while an "02"
command is used to save the elevation zero calibration value.

Case 79: II 0 - Set Zero Calibration

if (debug_mode)

Serial.println("O Command Received");

Serial.println(serial_buffer index);

II Check for 02 Command

if ((serial_buffer index

if (debug_mode)

2) & (serial_buffer[l]

Serial.println("02 Command Received");

50))

set 0 el cal(); II 02 - Set the Elevation Zero Calibration

else {

set_O az cal(); II 0 - Set the Azimuth Zero Calibration

break;

Azimuth/Elevation Rotator Controller 21-15

case 82: II R - Rotate Azimuth CW

if (debug_mode)

{

Serial.println("R Command Received");

rotate_az cw(); II Call the Rotate Azimuth CW Function

break;

case 83: II S - Stop All Rotation

if (debug_mode)

Serial.println("S Command Received");

az_rotate_stop();

el rotate stop();

break;

II Call the Stop Azimith Rotation Function

II Call the Stop Elevation Rotation Function

case 85: II U - Rotate Elevation Up

if (debug_mode)

Serial.println("U Command Received");

rotate_el up(); II Call the Rotate Elevation Up Function

break;

case 87: II W - Rotate Azimuth and Elevation to Set Point

if (debug_mode)

Serial.println("W Command Received");

II Call the Rotate Azimuth and Elevation to Set Point Function

rotate_az_el to();

break;

When the command has been decoded and executed, the incoming serial
character buffer is cleared and the buffer index is set to 0. The function will then
return to the main loop () to wait for the next command.

II Clear the Serial Buffer and Reset the Buffer Index Pointer

serial buffer index = O;

serial_buffer [OJ 0;

21-16

The send current_az () function is used to build and send the
response to the "C" command sent by the tracking software on the PC. The
tracking software expects the response to be in the format of "+Oaaa", where

Chapter 21

aaa is the azimuth value in degrees. This function will read the AID converter
and map the value to degrees based on the current azimuth calibration values. A
string is then built using the Yaesu GS-232A format that the tracking software
is expecting, and then sent back to the tracking software via the USB serial port.
Because the G5400/5500 rotators have 0° /360° at midscale, the data has to be
adjusted to return the correct azimuth value.

II Send the Current Azimuth Function

void send_ current az()

read_adc(); II Read the ADC

II Map Azimuth to degrees

if (debug_mode)

Serial .println(current_AZ);

I I Map the Current Azimuth to Degrees

AZ Degrees= map(current_ AZ, AZ_O, AZ_ MAX, 0, 360);

II Correction Since Azimuth Reading starts at Meter Center Point

if (AZ Degrees > 180)

AZ_Degrees

else {

AZ Degrees

if (debu g_mode)

AZ Degrees - 180;

AZ Degrees + 180;

Serial.println(AZ Degrees);

II Send it back v i a serial

Serial Send Data = "";
- -

if (AZ Degrees< 100) II pad with O's if needed

{

Serial Send Data = "0";

if (AZ Degrees < 10)

{

Serial Send Data = "00";

II Send the Azimuth in Degrees
Serial Send Data= "+O" +Serial Send Data+ String(AZ Degrees);

Serial.println(Serial_ Send_Data); II Return value via RS-232 port

Azimuth/Elevation Rotator Controller 21-17

The send c ur rent aze l () function is used to build and send the
- -

response to the "C2" command sent by the tracking software back to the PC.
The tracking software expects the response to be in the format of "+Oaaa+Oeee",
where aaa is the azimuth value, and eee is the elevation value. This function
will read the AID converter and map the values to degrees based on the current
azimuth and elevation calibration values. A string is then built using the Yaesu
GS-232A format that the tracking software is expecting, and then sent back to
the tracking software via the USB serial port. As with the "C" command, the
azimuth data has to be adjusted to return the correct azimuth value.

II Function to Send the Current Azimuth and Elevation

void send_current azel()

read_adc(); II Read the ADC

II Map Az i muth to degrees

if (debug_mode)

Serial.println(current_AZ);

II Map the Current Azimuth to Degrees

AZ Degrees= map(current_AZ, AZ 0, AZ_MAX, 0, 360);

II Correction Since Azimuth Reading starts at Meter Center Point

if (AZ Degrees > 180)

AZ_Degrees

else {

AZ Degrees 180;

AZ Degrees AZ Degrees + 180;

II Map Elevation to degrees

if (debug_mode)

Serial . println(current_EL);

II Map the Elevation to Degrees

EL_Degrees = map(current_EL, EL 0, EL_MAX, 0, 180);
if (debug_ mode)
{

Serial.println(EL_ Degrees);

Serial.println(AZ Degrees);

II Send it back via serial

Serial_Send_ Data = "";

if (AZ Degrees< 100) II pad with O's if needed
{

Serial Send Data = "O";

21-18 Chapter 21

if (AZ Degrees < 10)

Serial Send Data = "00";

II Send the Azimuth part of the string

Serial_Send_Data = "+O" + Serial_Send_Data + String(AZ Degrees) + "+0";

if (EL_Degrees < 100) II pad with O's if needed
{

Serial Send Data = Serial Send Data + "0";

if (EL_Degrees < 10)

Serial Send Data = Serial Send Data+ "0";

II Send the Elevation Part of the String

Serial Send Data= Serial Send Data+ String(EL Degrees);

Serial.println(Serial Send_Data); II Return value via Serial port

The set_ max_ az _cal () function is used to save the azimuth full scale
value to the Arduino's onboard EEPROM:

II Set the Max Azimuth Calibration Function

void set_max_az cal()

if (debug_mode)

Serial.println("Calibrate Max AZ Function");

read_adc(); II Read the ADC

II save current az and el values to EEPROM - Zero Calibration

if (debug_mode)

Serial.println(current_AZ);

II Set the Azimuth Maximum Calibration to Current Azimuth Reading

AZ MAX = current_AZ;

write eeprom_cal_data(); II Write the Calibration Data to EEPROM

if (debug_mode)

{

Serial.println("Max Azimuth Calibration Complete");

The set max el cal () function is used to save the elevation full scale - - -
value to the Arduino's onboard EEPROM:

Azimuth/Elevation Rotator Controller 21-19

II Set the Max Elevation Calibration Function

void set_max_el_ca l ()

if (debug_mode)

Serial.println("Calibrate EL Max Function");

read_adc(); II Read the ADC

II save current Azimuth and El evation values to EEPROM - Zero Calibration

if (debug_mode)

Serial.println(current_ EL);

II Set the Elevation Max Calibration to the Current Elevation Reading

EL MAX = current_ EL;

write_eeprom_cal_data(); II Write the Calibration Data to EEPROM

if (debug_mode)

{

Serial.println("Max Elevation Calibration Complete");

Therotate_az_ccw(),rotate_az_ cw(),rotate_el_up(),
and rotate_ el_ down () functions control the relays inside the Yaesu
G5400/5500 rotator controller to perform the actual rotation functions. The a z
rotate_ stop() andel rotate stop() areusedtotumofftherelays
and stop rotation.

II Function to Rotate Azimuth CCW

void rotate az_ ccw()

digitalWrite(rotate left, HIGH); II Set the Rotate Left Pin High

digitalWrite(rotate right, LOW); II Make sure the Rotate Right Pin is Low

II Function to Rotate Azimuth CW

void rotate_ az cw()

digitalWrite(rotate right, HIGH); II Set the Rotate Right Pin High

digitalWrite(rotate left, LOW); II Make sure the Rotate Left Pin Low

II Function to Rotate Elevation Up

void rotate_el_ up()
{

digitalWri te(rotate_up, HIGH); II Set the Rotate Up Pin High

21-20 Chapter 21

digitalWrite(rotate_down, LOW); II Make sure the Rotate Down Pin is Low

II Function to Rotate Elevation Up

void rotate el_down()

digitalWrite(rotate_down, HIGH); II Set the Rotate Down Pin High

digitalWrite(rotate_up, LOW); II Make sure the Rotate Up Pin is Low

II Function to Stop Azimuth Rotation

void az rotate stop()

digitalWrite(rotate right, LOW); II Turn off the Rotate Right Pin

digitalWrite(rotate left, LOW); II Turn off the Rotate Left Pin

II Function to Stop Elevation Rotation

vo id el rotate stop()

digitalWrite(rotate_up, LOW); II Turn off the Rotate Up Pin

digitalWrite(rotate_down, LOW); II Turn off the Rotate Down Pin

The rotate to () function is used to implement the "M" command.
This command is in the format of Maaa, where aaa is the desired azimuth
value in degrees. This function will read the desired azimuth from the "M"
command, compare the requested value to the reading from the AID, and rotate
the azimuth rotator in the proper direction. While the rotator is moving to
the desired position, this function will allow processing to return to the main
loop () and check for additional commands, such as a "Stop" command. The
status and control of this move command is handled in the main loop () by the
check move () function.

II Function to Rotate to Set Point

void rotate to()

if (debug_mode)

Serial.println("M Command - Rotate Azimuth To Function");

II Decode Command - Format Mxxx where xxx =Degrees to Move to

if (debug_mode)

Serial.println(serial buffer index);

if (serial_buffer index== 4) II Verify the Command is the proper length

Azimuth/Elevation Rotator Controller 21-21

if (debug_mode)

{

Serial .println("Value in [l) to [3] ?");

II Decode the Azimuth Value
Requested_AZ = (String(char(serial_buffer[l))) + String(char(serial

buffer[2))) + String(char(serial_buffer[3)))) ;

AZ To= (Requested_AZ.toint()); II AZ Degrees to Move to as integer

if (AZ_To <0) II Make s ure we don't go be l ow 0 degrees

AZ To 0;

if (AZ To >360) II Make sure we don 't go over 360 degrees

AZ To = 360;

if (AZ To > 180) II Adjust f or Meter starting at Center

AZ To = AZ To - 180 ;

e l se {

AZ To = AZ To + 180;

if (debug_mode)

{

Serial.println(Requested_AZ);

Serial .println (AZ_To);

II set the move flag and start

read_adc(); II Read the ADC

II Map it to degrees

if (debug_mode)

Serial.println(current_AZ);

II Map the Azimuth Value to Degrees

AZ Degrees = map(current_AZ, AZ 0, AZ_MAX , 0, 360);

if (debug_mode)

{

Serial.println(AZ Degrees) ;

AZ_Distance = AZ_To - AZ_Degrees ; II Figure out far we have to move

set_AZ = AZ To;

II No move needed if we 're within the Tolerance Range

if (abs(AZ Distance) <=AZ Tolerance)

21-22 Chapter 21

az rotate stop(); //Stop the Azimuth Rotation

set AZ= -1; // Turn off the Move Command

else { // Move Azimuth - figure out which way

if (AZ Distance > 0) //We need to move CCW

rotate az ccw(); II If the distance is positive, move CCW

else {

rotate az cw(); //Otherwise, move clockwise

The send_ current_ e 1 () function prepares and returns the response
to the "B" command. The response is in the format "+Oeee", where eee is the
current elevation value in degrees.

II Function to Send the Current Elevation

void send_current_el()

read_adc(); II Read the ADC

II Map it to degrees

if (debug_mode)

{

Serial.println(current EL);

II Map the Elevat ion Value to Degrees

EL_Degrees = map(current_EL, EL_O, EL_MAX, 0, 180);

if (debug_mode)

{

Serial.println(EL_Degrees);

Serial.println(AZ Degrees);

II Send it back v ia serial

Ser ial Send Data - \\II•
- '

if (EL_Degrees < 100) //pad with O's if needed

{

Serial Send Data = "On;

if (EL_Degrees < 10)

Serial Send Data = "OOn;

II Send the Elevation String

Serial Send Data= "+On+ Serial Send Data+ String(EL_Degrees);

Serial.println(Serial Send_Data); //Return value via RS-232 port

Azimuth/Elevation Rotator Controller 21-23

The rotate_ az _el_ to () function is similar to the rotate_ to ()
function, except it performs azimuth and elevation rotation simultaneously in
response to the "W" command. The "W" command is in the format "Waaa eee",
where aaa is the desired azimuth, and eee is the desired elevation. This function
will read the desired azimuth and elevation from the "W" command, compare
the requested values to the readings from the AID, and rotate the azimuth and
elevation rotators in the proper direction. While the rotators are moving to
the desired position, this function will allow processing to return to the main
loop () and check for additional commands, such as a "Stop" command. The
status and control of this move command is handled in the main loop () by
the check move () function. Since the azimuth and elevation rotations are
handled separately, both axis of rotation can occur simultaneously, and each
will stop independently when the desired position is reached.

II Rotate Azimuth and Elevation to Set Point Function

void rotate_az el to()

if (debug_mode)

Serial.println("W Command - Rotate Azimuth and Elevatio n To Function");

II Decode Command - Format Waaa eee where aaa =Azimuth

II to Move to and eee =Elevation to Move to
if (debug_mode)

Serial.println(serial_buffer index);

if (serial buffer index == 8) II Verify the command is the proper length

if (debug_mode)

Serial.println("Value in [1] to [3]?");
}

II Decode the Azimuth portion of the command

Requested_AZ = (String(char(serial_buffer[l])) + String(char(serial

buffer[2])) + String(char(serial_buffer[3]))) ;

AZ To= (Requested_AZ. to int()); II AZ Degree s to Move to as integer

if (AZ_To <0) II Don't allow mov ing below zero
{

AZ To = 0;

if (AZ To >360) II Don't allow moving above 360

AZ To 360;

if (AZ To >180) II Adjust for Azimuth starting at Center

21-24 Chapter 21

AZ To = AZ To - 180;

else {

AZ To AZ To + 180;

if (debug_mode)

Serial.println(Requested_AZ);

Serial.println(AZ To);

Serial.println("Value in [5] to [7]?");

II Decode the Elevation portion of the command

Requested_EL = (String(char(serial_buffer[S])) + String(char(serial

buffer[6])) + String(char(serial_buffer[7]))) ;

EL To= (Requested_EL.toint()); II EL Degrees to Move to as integer

if (EL_To <0) II Don't allow moving below zero

EL To = O;

if (EL_To >180) II Don't allow moving above 180

EL To 180;

if (debug_mode)

Serial.println(Requested_EL);

Serial.println(EL_To);

II set the move flag and start

read_adc(); II Read the ADC

II Map it to degrees

if (debug_mode)

{

Serial .println(current_AZ);

II Map the Azimuth Value to Degrees

AZ Degrees= map(current_AZ, AZ 0, AZ_MAX, 0, 360);

if (debug_mode)

{

Serial.println(AZ Degrees);

AZ Distance= AZ_To - AZ Degree s ; II Figure how far to move Azimuth

set AZ = AZ To; - -
II Map the Elevation Value to Degrees

EL_Degrees = map(current_EL, EL_O, EL_MAX, 0, 180);

if (debug_mode)

Azimuth/Elevation Rotator Controller 21-25

Serial.println(EL Degrees);

EL Distance= EL To - EL Degrees; // Figure how far to move Elevation

set EL = EL To;

II Set Azimuth
II No move needed if we're within tolerance range

if (abs(AZ Distance) <=AZ Tolerance)

az rotate stop(); II Stop the Azimuth Rotation

set AZ= -1; // Turn off the Azimuth Move Command

else { // Move Azimuth - figure out which way

if (AZ Distance > 0) I /We need to move CW

rotate az cw(); //Rotate CW if positive

else {

rotate az ccw(); //Rotate CCW if negative

II Set Elevation
II No move needed if we're within tolerance range

if (abs(EL Distance) <= EL_Tolerance)

el rotate stop(); //Stop the Elevation Rotation

set EL= -1; // Turn off the Elevation Move Command

else { // Move Elevation - figure out which way

if (EL Distance > 0) I /We need to move CW

rotate el up(); //Rotate Up if positive

else {

rotate el down(); //Rotate Down if negative

The set 0 az cal () function is used implement the "O" command and
- - -

saves the azimuth zero calibration value to the Arduino's EEPROM:

II Set Azimuth Zero Calibration

void set 0 az cal()

if (debug_mode)

Serial.println("Calibrate Zero Function");

read adc(); //Read the ADC

21-26 Chapter 21

II save current az and el values to EEPROM - Zero Calibration

if (debug_mode)

Serial.println(current_ EL);

Se rial.println(current_AZ) ;

AZ 0 =current AZ ; II Se t the Azimuth Zero Calibration to current position

write_eeprom_ca l data(); II Write the Calibration Data t o EEPROM

if (debug_mode)

{

Serial . println ("Zero Azimuth Calibration Complete");

The set_ O _el_ cal () function is used implement the "02" command
and saves the elevation zero calibration value to the Arduino's EEPROM:

II Set the Elevation Zero Ca libration

void set 0 el cal()

if (debug_mode)

Serial . println(" Calibrate Zero Function");

read adc(); II Read the ADC

II save current az and el values to EEPROM - Zero Calibration

if (debug_mode)

Serial.println(curren t_EL);

Serial.println(current_AZ);

II Set the Elevation Zero Calibrat ion to current position

EL 0 = current EL;

write_eeprom_cal data (); II Write the Calibration Data to EEPROM

if (debug_mode)
{

Serial.println("Zero Elevation Calibration Complete");

The read_ adc () function is used to read the analog azimuth and
elevation voltages coming from the rotator controller and converts these values
to raw, uncalibrated, 16-bit digital values using the ADS 1115 AID. The values
are stored in the global variables c urrent_EL and current_ AZ, and used
by the other functions to determine the current azimuth and elevation of the
rotators.

Azimuth/Elevation Rotator Controller 21-27

II Function to read t he ADC
void read_adc ()

if (debug_mode)
{

Serial.println("Read ADC Function ");

int RotorValue; //Variable to store the rotor value
adc.setRate(ADS1115_RATE 475); //Set the ADC rate to 475 samples/sec

adc.setGain(ADS1115 PGA_6P144); //Set the ADC gain to 6.144V

II Set the ADC to Channel 0 ANO+ Vs ground (single-ended)

adc.setMultiplexer(ADS1115_MUX_PO_NG);

delay(lO); // adc settl ing delay
current_EL = adc.getDiffO(); // Read ADC Channel 0

if (debug_mode)

{

Serial.println(current EL);

II Set the ADC to Channel 1 ANl+ Vs ground

adc.setMultiplexer(ADS1115_MUX_Pl_NG);

delay(lO); // adc settling delay
current_AZ = adc.getDiffl(); // Read ADC Channel 1

if (debug_mode)
{

Serial.println(current_AZ);

The last function in our sketch is the check_ move () function. When we
receive a movement command, the command is decoded and the relays on the
rotator controller are energized to move the antenna to the requested position.
This function is called from the main loop () and continually checks the status
of the rotator positioning and stops the rotation when the rotators reach the
requested position.

II Check to see if we've been commanded to move

void check_move()

II We're moving - check and stop as needed

if (set_AZ != -1 I I set_EL != -1)

read_adc(); II Read the ADC

II Map AZ to degrees

if (debug_mode)

{

Serial.println(current_AZ);

II Map the Current Azimuth reading to Degrees

AZ Degrees= map(current_AZ, AZ 0, AZ_MAX, 0, 360);

21-28 Chapter 21

II Map EL to degrees

if (debug_mode)

Serial.println(current_EL);

II Map the Current Elevation to Degrees

EL_Degrees = map(current_EL, EL 0, EL_MAX, 0, 180);
if (debug_mode)

{

Serial.println(EL_Degrees);

Serial.println(AZ Degrees);

if (set_AZ != -1) // If Azimuth is moving

AZ Distance = set AZ - AZ Degrees; // Check how far we have to move

II No move needed if we're within the tolerance range

if (abs(AZ Distance) <=AZ Tolerance)

az rotate stop(); //Stop the Azimuth Rotation

set AZ= -1; // Turn off the Azimuth Move Command

else { // Move Azimuth - figure out which way

if (AZ Distance> 0) //We need to move CW
{

rotate_az cw(); //Rotate CW if positive

else {
rotate az ccw(); //Rotate CCW if negative

if (set EL != -1) // If Elevation is moving

EL_Distance = set_EL - EL_Degrees; // Check how far we have to move

II No move needed if we're within tolerance range

if (abs(EL_Distance) <= EL_Tolerance) {

el rotate_stop(); //Stop the Elevation Rotation
set EL= -1; // Turn off the Elevation Move Command

else { // Move Azimuth - figure out which way
if (EL Distance> 0) //We need to move CW

rotate_el_up(); //Rotate Up if positive

else {

rotate_el_down(); //Rotate Down if negative

Azimuth/Elevation Rotator Controller 21-29

Looking back, you can see that this is a big sketch. But, by breaking it down
into small blocks, it doesn't really feel that way at all. This sketch does a lot
of things, but since each section is a modular block of code, you can build and
test it piece by piece. Using the debug mode method, you can troubleshoot it
section by section as you go. When you're finished, define the debug mode to
0, upload the sketch with the debug mode changes, and the diagnostic messages
are turned off and you 're ready to go.

To test the interface and set the azimuth and elevation calibration values,
you can use the Arduino IDE's Serial Monitor to send the GS-232A commands
directly to the Arduino. Manually rotate the azimuth and elevation rotator to
zero (both meters at minimum deflection) and use the "O" and "02" commands

R4

470 Q R3

R2 470 Q

470 Q R1

4700

....J<(U..O<'> N ~O Ol <Xl b~~~8~o8
al ~ ~ i'.§ Ci Ci Ci Ci 0 0

I I <
I I
I I
I I U1
I I Arduino Uno R3
I I
I I I -----------------,
----~-------------r1

w I I
> <(--' ffiu..tu N~ 0()
{/) w {/) 0 0 {/) {/)
wO::W>>ZZ~ o~"l<'>;a:lO o::Qo:: <') l{)C!)C!)> • <(<(<(<(<(<(

J1

DTR
Reset 2

Disable

8 Vee -------+--+-___..
R5,R6 10
4.7 kQ 9

2

3

ARRL1150

U2

ADS1 115
16-bit I2C ADC

Voo AINO

SCL

SDA

ADDR

ALERT

GND AIN1

AIN2

AIN3

4

+ C2

147
µF

5

+ C3

1
47µF

Figure 21.7 - Azimuth/Elevation Rotator Controller schematic diagram.

J2

C1 - 1 µF, 25 V capacitor. Q1-Q4 - 2N2222A NPN transistor.
C2, CJ - 47 µF, 25 V capacitors. R1-R6 - 470 n, Va W resistor.
J1 - 2 pin header. U1 - Arduino Uno.

J3

8-pin DIN

J2 - 8 pin header. U2 - Tl ADS1115 16-bit analog-to-digital converter.
J3 - 8 Pin DIN female connector. Arduino Uno Enclosure

21-30 Chapter 21

Figure 21.8- The finished Azimuth/Elevation Rotator
controller mounted in a Zigo Arduino Mega enclosure.

to set the zero calibration points. Then, manually rotate the azimuth and
elevation rotators to full-scale and use the "F" and "F2" commands to set
the azimuth and elevation full-scale values. Once you have done that, your
controller is calibrated and the calibration values are stored in the Arduino's
onboard EEPROM. You can recalibrate your controller at any time by repeating
the calibration process. You can now send the various OS-232A controller
commands listed back in Table 21.1 to test all the functions on your controller.
When you're finished, define the debug mode to 0 and upload the sketch with
the debug mode changes. This turns off the diagnostic messages and you're
ready to go.

Now that your controller is calibrated, you're ready to use the controller
with the SatPC32 or Ham Radio Deluxe satellite tracking software on your PC.
Don't forget to short the jumper on capacitor Cl to disable the DTR Reset, and
have the sketch loaded with the debug mode turned off. Configure your tracking
software to use the Arduino's COM port and select the Yaesu OS-232A az/el
rotator controller in your tracking software. Now your 05400/5500 rotator
should move and track the selected satellite.

Once you have everything working on the breadboard, you can build the
circuit on an Arduino protoshield using the schematic diagram in Figure 21.7.
Since this is a project that will be penp.anently located in my shack, I went for
a classier look with the enclosure. I mounted my finished Azimuth/Elevation
Rotator Controller in a Zigo Mega Enclosure (Figure 21.8) and mounted the
8-pin DIN connector on the side of the enclosure. The Zigo Arduino enclosures
are available on eBay and at Amazon.com. I built an 8-pin DIN-to-DIN patch
cable to interface to the Yaesu 05400/5500 rotator controller. We won't need
to connect any source of external power to the Arduino since we'll be using the
power provided by the PC and the Arduino's USB connector.

Enhancement Ideas
There's really not much left to do with this project in the way of

enhancements. Looking at my Yaesu 05400 controller box, there may be just

Azimuth/Elevation Rotator Controller 21-31

21-32

enough room to mount an Arduino Nano and a small circuit board inside the
box. This would allow you to move the Azimuth/Elevation Rotator Controller
inside the Yaesu rotator control box itself and make it completely self
contained.

Since the Yaesu GS-232 rotator computer interface is used by the Yaesu
DXA-series of azimuth-only rotators, you can use this controller to drive those
rotators as well. Ham Radio Deluxe has an option to use the Yaesu GS-232A for
azimuth control only. The Yaesu DXA azimuth-only rotators use a 6-pin DIN
connector instead of the 8-pin DIN connector because they don't need the two
pins used for elevation in the G5400/G5500. You can even omit the elevation
relay transistors used for elevation control if desired if you 're going to use this
project to control an azimuth-only Yaesu DXA-series rotator.

References

Chapter 21

Amazon - www.amazon.com
Ebay - www.ebay.com
Ham Radio Deluxe - www.ham-radio-deluxe.com
SatPC32 software - www.dkltb.de
Yaesu - www.yaesu.com

CHAPTER 22

CW Decoder

The finished CW Decoder mounted in a SparkFun
pcDuino/Arduino enclosure.

How many times have you been working CW, gotten distracted and asked
yourself "What did they just send?" It's times like that I wish that I had a
CW decoder handy to double-check myself. Sure, I can fire up the PC with a
soundcard interface and have the PC do the decoding for me, but that can be
cumbersome, especially if I'm operating a portable station in the middle of
nowhere without any ac power.

By now you've seen some projects that can send CW, but what about
receiving and decoding CW? If they can write a computer program for the
PC that uses a soundcard interface to decode CW, then surely we can do
it with an Arduino. All we have to do is convert the CW signal to a digital
pulse and measure the pulse widths to decode the CW. Now for the really
cool part, someone has already created an Arduino library to do just that. The

CW Decoder 22-1

MorseEnDecoder. h library will decode a digital CW signal into the actual
letters and numbers; all we have to do is convert the CW audio tone into a
digital signal that the MorseEnDecoder. h library can use.

Tone Decoder
To do this, we'll use a Texas Instruments LM358 op amp to buffer the CW

audio, and a Texas Instruments LM567 tone decoder chip to convert the CW
tone into a digital signal. By using the LM567 tone decoder, we also have the
ability to limit the decoder bandwidth to help prevent interference from adjacent
CW signals. The LM567 can be used to decode a tone and the output of the
LM567 will go high when the desired frequency is present on the input. The
center frequency and bandwidth of the decoded tone are controlled by the value
of a resistor and two capacitors. To calculate the desired center frequency, you
can use the formula

f,,= 1/(1.1 x RC)

where
R is the resistance (in ohms) across pin 5 and pin 6 on the LM567
C is the capacitance (in farads) on the capacitor between pin 6 on the

LM567 and ground.

The bandwidth of the tone decoder can be determined with the formula

BW (in Hz) ~ J; x((1o?ox(~ ;:c) }100 J
where

V:n is the input signal in vrms

!,, is the center frequency
C is the value of the capacitor (in micro farads) between pin 2 on LM567 and ground.

I 16x2 I 2C LCD I
••

11

Aud io Buffer Amp/ - Arduino Uno IN_. Tone Decoder
-..

11
- •Ir

Rx LED
cw ~

Speed
ARRL1151

Figure 22.1 - CW Decoder block diagram.

22-2 Chapter 22

R9 1k0

BT1
9V

ARRL 1152

C1

Fortunately, there is an online LM567 tone decoder calculator at www.
vk2zay.net to make these calculations much easier for us. Using the online
calculator, a variable center frequency of 455 Hz to 909 Hz, with a bandwidth
of 217 Hz to 300 Hz, was chosen for the CW Decoder project. With the
potentiometer (R6) for the LM567's center frequency at a mid-range value of
5 kn, the center frequency will be approximately 600 Hz, with a bandwidth of
270 Hz.

Now that we know how we can convert the CW audio into a digital signal
the Arduino can use, we can plan our project. The CW Decoder block diagram
(Figure 22.1) shows that we will use the LM358/LM567 circuit to decode the
CW audio signal, and we'll scroll the decoded CW on a 16-line by 2-character
(16x2) LCD display. We will also use an LED on the output of the LM567 as
a tuning indicator. Finally, we'll use a potentiometer to adjust the CW decode

R2
10k0

C3
10µF

RS
10k0

Level Adj

CW Decoder

02
1 NS711

CB

0.1 uF

01 .L I
1Ns?11 I ,. cs

2.2uF

R11
4700

R8
10k0

} I ,.

U3

081

R4
100k0 R6 10k0

Frequency Adj

0.1uF

. 03
I 1N4001
I .,.

S1

R13

U4

Speed

R10
1k0

Figure 22.2 - CW Decoder Fritzing diagram.

CW Decoder 22-3

-

Start

speed range. The MorseEnDecoder. h library doesn't handle automatic CW
decode speed adjustments, so we'll need to use the SPEED potentiometer to
adjust the CW decode speed manually.

Now that we have our block diagram, we can start putting all the pieces
together on a breadboard. The majority of this project involves the LM386/
LM567 circuit. Figure 22.2 shows the Fritzing diagram used to build the CW
decoding circuit. Potentiometer R9 will be used to adjust the audio input to the
LM358 op amp we're using to amplify and buffer the audio input to the LM567.
Potentiometer R5 is used to adjust the audio input level to the LM567. The
LM567 requires an input signal level of 200 m V or less to decode properly, so
two 1N5711 Schottky diodes are used as clamping diodes to limit the LM567
input voltage to a maximum of 200 m V. Potentiometer R6 is used to adjust the
center frequency of the CW tone to be decoded. As a starting point, adjust this
resistor to its mid-range point of 5 kQ.

Once you have the CW audio decoding circuit on the breadboard, you can
test and adjust the center frequency. Connect the audio from your receiver to
the audio input of the CW Decoder circuit and tune to a CW signal. You can
also use the waveform generator we built back in Chapter 18 to precisely tune
the center frequency of the LM567. Using an oscilloscope or voltmeter, adjust
potentiometer R9 until the audio input on pin 2 of the LM358 is about 50 m V
ac. The gain of the LM358 is controlled by the values of resistors RI and R2.
For the CW Decoder project, the gain was selected to be 10, which is calculated
using the simple formula Rl/R2. This will provide an output of up to
500 m V on pin 1 of the LM358. Once you have the input on pin 2 of the LM358
adjusted to 50 m V, you can adjust R5 to control the audio level into the LM567.
You'll want to adjust this level to be around 200 mV on your voltmeter.

Next, tune your receiver to output the pitch of the CW

Include Libraries

'
tone that you prefer to listen to. Alternatively, you can use the
waveform generator, and adjust its output to the frequency your
ears like best, usually a frequency around 600 to 700 Hz. Adjust
potentiometer R6 to find the center of the point where the LED
(DSI) on pin 8 of the LM567 comes on. Your CW tone decoder
circuit is now tested and tuned to the desired CW pitch.

Define Variables
Setup r2c LCD

1J

Setup

Initialize r2c LCD -.-
Loop

Set CW Decode Speed
Read CW Input

Decode CW Input

!
The Sketch

Finish hooking the rest of the circuit on your breadboard and
we're ready to write the sketch for the CW Decoder. Using the
flowchart in Figure 22.3, you can see that the LM358/LM567
does most of the work for us, and the MorseEnDecoder. h
library will handle the rest of the work on the Arduino side of
things.

Update Scrolling LCD Text

Starting out in the sketch, we'll define the libraries we'll
need for the CW Decoder project. You'll note that the sketch
defines the a v r / pgmspace. h library, but you don't see where
it is used in the sketch. The MorseEnDecoder. h library

...__ ________ A_R_RL_11_53__, stores its CW conversion tables in the Arduino's flash memory,

F
.

22 3
CW

0
so the library itself uses the avr / pgmspace. h library. So,

1gure . - ecoder flowchart.
you effectively have the case of a library usmg a library to

22-4 Chapter 22

get the job done. It doesn' t get much more efficient than that. To display the
decoded CW characters, we'll use a 16x2 LCD display with an PC "backpack"
to communicate with the Arduino using the PC bus. The complete sketch can
be found in Appendix A and online at www.wSobm.us/ Arduino.

#include <avr l pgms p ace .h> II Us e d by t he MorseEnDecoder Libra ry

#include <MorseEnDe coder.h> II Mo r se EnDecoder Library

#include <Wire.h> llI2C Li brary

#include <LiquidCr ysta l I2C .h> II Liquid Cr ystal I2 C Lib r a r y

Next, we' ll define the Arduino I/O pins and the variables used in the sketch:

#define morseinPin 2

#define Speed_Pin AO

const int led end= 16 ; II set wi dth of LCD

const int led a ddr ess = Ox27 ; II I2C LCD Address

const int led lines = 2 ; I I Number of lines on LCD

String text; II Variable to hold LCD scroll ing text

char cw rx; II Var i able for i n coming Morse charac t e r

int read_speed; II Variable fo r desired CW speed set t ing

int current spee d=- 1 ; II variab les to track speed pot

Finally, we'll initialize the objects for the MorseEnDecoder. hand
the LiquidCrystal _ I2C . h libraries. Since we are not using the sending
portion of the MorseEnDe coder. h library, we don't need to be concerned
about the MORSE_ KE YER or MORSE_ ACTIVE LOW parameters when we
initialize the library.

II Define the Mo r se objects

morseDecoder mo r sei nput (morsein Pin , MORSE KEYER , MORSE_AC TIVE LOW);

II set the LCD I 2C addr ess to Ox 27 for a 16 chars a nd 2 line display

LiquidCrystal I2C lcd (lcd_addr ess , lcd_end , lcd_ lin e s);

Since the majority of the work will be handled by the
Mo rseEnDecoder. h library, there's really not much to be done in the
setup () loop. We' ll initialize the LCD, turn on the backlight and display a
brief startup message so that we know everything is okay to this point.

lcd.init(); I I i n i t i a liz e t he LCD

lcd.backlight(); II Tu r n o n the LCD backl ight

led.home(); II Se t t he cursor to line 0 , co l umn 0

lcd.print("KW5GP CW Decoder u);

delay(3000);

led.clear();

CW Decoder 22-5

J1
Audio

IN

2

In the main loop () , we'll first read the value of the CW receive SPEED

potentiometer. If the receive speed potentiometer value has changed, the
new receive speed will be displayed on the LCD and the receive decode
speed will be updated in the MorseEndecoder. h library. Since the
MorseEnDecoder. h library doesn't auto-detect the speed of the received
CW, the SPEED potentiometer must be adjusted manually to match the receive
speed. This adjustment does not have to precise. Once you start listening
to the incoming CW, you can approximate the speed and adjust the receive
speed accordingly. Since this is a coarse adjustment, you'll find that it's not as

Vee R2

Adjust

U1
Ar du i no Uno R3

Vee Vee

C5

C6 ff'+ 2
0.22 µF U3

0.1 LM567

R5
µF

10 kO 1N5711 CB 4 5
02

01 C4
1N5711

l1 µF
F eq

dj

U4 16x2 LCD

--' u
<fl

R13 R12
4.7 kQ 4.7 kQ

Vee ~-----+-~

0
z
(.9

Vee

R11
470 Q

~

DS1

R7 10 kQ

ARRL 1154

Figure 22.4 - CW Decoder schematic diagram.

BT1 - 9 V battery. DS1 - Smm LED. R1 O - 1 kn potentiometer
C1, C2, C7, CB - 0.1 µF, 16 V capacitor. J1 - Mono mini jack. R11 - 470 n, Ve w resistor.
C4 - 1 µF, 16 V capacitor. R1 - 1 kn, Ve W resistor. R12, R13 - 4. 7 k n, Ve W resistor.
C3 - 10 µF, 16 V capacitor. R2 - 10 kn, Ve W resistor. S1 - SPST switch.
CS - 2.2 µF, 16 V capacitor. R3, R4 -100 kn, Va W resistor. U1 -Arduino Uno.
C6- 0.22 µF, 16 V capacitor. RS, R6-10 kn trimmer potentiometer. U2 - LM358 op amp.
D1, D2 - 1 N5711 Schottky diode. R7, R8 - 10 kn, Va W resistor. U3 - LM567 tone decoder.
D3 - 1 N4001 diode. R9 - 1 kn trimmer potentiometer. U4 - 16x2 12C LCD display.

22-6 Chapter 22

cumbersome as it may seem to be at first. The MorseEndecoder. h library
can handle some variation in the receiving speed internally, so you'll just need
to set the receiving speed close to the actual speed and the library will take it
from there.

II Read the potentiometer to determine code speed

read_speed = map(analogRead(Speed_Pin),10,1000,5,35);

II If the Speed Pot has changed, update the speed and LCD

if (current speed != read_speed)

current_speed = read_speed; II Set the current speed to the desired speed

morseinput.setspeed(read_speed); II Call the set speed function

II set up the LCD display with the current speed

text = String(current_speed) + " wpm";

led . clear(); II Clear the LCD

lcd.setCursor(5,l); II Set the cursor to 5,1

lcd.print(text); II Display the CW text

text = '\fl a

'

The actual CW decoding is done by the MorseEnDecoder. h library.
All you have to do is call the morseinput. decode () function to decode
the incoming character. Using the morseinput. availab l e () function to
see if there is a new character received, the morseinput. read () function
will return the decoded CW character. The received characters are then scrolled
from right to left on the top line of the LCD.

morseinput.decode(); II Decode incoming CW

if (morseinput.available()) II If there is a character available

cw_rx = morseinput.read(); II Read the CW character

II Display the incoming character - Set the text to display on line 0 only.

II When length= 15, trim and add to new character so display

II appears to scroll left

if (text.length() >15)

text= text.substring(l,16); II Drop the First Character

text= text+ cw rx; II Set up the text to display on the LCD

lcd.setCursor(0,0); II Set the cursor to 0,0

lcd.print(text); II Display the CW text

}

Once you have the circuit and sketch working on the breadboard, you can
use the schematic diagram in Figure 22.4 to build the finished project on an

CW Decoder 22-7

Figure 22.5 - Inside view of the CW Decoder.

Figure 22.6 - The CW Decoder wired on an Arduino
protoshield. As you can tell, this one was starting to get a little
crowded.

Arduino protoshield, and mount it in an enclosure. For this project, I used a
clear SparkFun pcDuino/ Arduino project enclosure (Figure 22.5). Even though
there are a lot of external components in this project, everything fits easily on
the protoshield (Figure 22.6) with room to spare.

Enhancement Ideas
Naturally, the first enhancement that comes to mind is to downsize

everything with an Arduino Nano and a small piece of perfboard, which would
allow you to build the CW Decoder in a much smaller enclosure that would fit

22-8 Chapter 22

in a shirt pocket or mount to your portable QRP CW rig using hook-and-loop
fasteners. You could also modify the MorseEnDecoder. h library, add in the
code needed to implement the auto-speed detection, and have the CW decoder
automatically adjust to the speed of the incoming CW signal. And, since the
MorseEnDecoder. h library also has the ability to send CW, you could add
in the code for an iambic keyer, and use the MorseEnDecoder. h library to
tum the project into a complete CW keyer and decoder all in one small, portable
package.

References
Google - code.google.com/p/morse-endecoder/
LM567 Tone Decoder Calculator - www.vk2zay.net/calculators/lm567.php
Texas Instruments - www.ti.com

CW Decoder 22-9

CHAPTER 23

Lightning Detector

The finished Lightning Detector mounted in a
Solarbotics Arduino Mega S.A.F.E.

Like so many of my Arduino projects, the Lightning Detector project
concept started out with "Wouldn't it be cool if. .. ?" That's one of the things I
like most about the Arduino. If you can think it up, there's a good chance you
can find a sensor, module, or a circuit design that will do what you want it to
do. That's how it was with the Lightning Detector. Since I'm on the road a lot,
I either have to remember to disconnect my antennas before I leave, or roll the
dice and hope that lightning has no interest in feeding on my rigs. One evening,
I was brainstorming with Tim Billingsley, KD5CKP, and I thought, "Wouldn't
it be cool if you could make a lightning detector that would automatically
disconnect your antennas when it detected lightning and reconnected them
when the storm had passed?" The discussion went on a bit and ended with the

Lightning Detector 23-1

Figure 23.1 - The Embedded Adventures AS3935 MOD-
1016 lightning detector module.

consensus that a lightning detector that did all that would be cool, but existing
lightning detectors were too expensive.

That led to some research on the Internet about lightning detectors, and I
stumbled across the Austriamicrosystems AS3935 Franklin lightning sensor
chip. Not only that, but I found a fully assembled module that would connect
directly to the Arduino. The Embedded Adventures MOD-1016 module (Figure
23.1) incorporates the AS3935 chip and all the support components onto a
module that connects to the Arduino via either the SPI or PC bus. The AS3935
lightning sensor can detect lightning up to 40 km away and provide distance
and strength of the lightning strike. And the best part, the module only cost
$21. Now that we had cleared the "too expensive" hurdle, it was time to get my
hands on one of these modules and start playing.

Around the same time, I was invited by Craig Behrens, NM4T, to present
a forum on the Arduino at the Huntsville Hamfest in Alabama. Craig asked
me to come up with a couple of new and unique ham-related projects for the
presentation. Since I had never seen a lightning detector anywhere, much less
an affordable one, this would be the perfect project for the forum.

Austriamicrosystems AS3935
Franklin Lightning Detector

The Austriamicrosystems AS3935 is a programmable lightning sensor
chip that can detect the presence and approach of lightning, both cloud-to
ground and cloud-to-cloud. The module can detect lightning at a distance of up
to 40 km and estimates the distance to the leading edge of the storm in steps
of 16 ranges. The AS3935 does this by analyzing the RF signals it receives

23-2 Chapter 23

AS3935
Lightning l'----
Sensor

Nokia
5110

LCD Display

Arduino Uno

Lightning - ./'_
Simulate~ (ARRL 1155

Figure 23.2 - Lightning Detector block diagram.

81
9V

Lightning Detector

Lightning
Simulate

U3

0

I

I i 1N4001
I D1

0

Figure 23.3 - Lightning Detector Fritzing diagram.

at approximately 500 kHz. The module has a
programmable internal capacitor that is used to
tune a small external loop antenna for resonance
at 500 kHz. It uses a sophisticated on-chip
algorithm to validate the incoming signal and
can distinguish between man-made noise and
lightning. If a valid lightning strike is detected,
the AS3935 will calculate the energy of the
strike, and then perform a statistical estimate
of the distance of the strike. The module can
communicate with the Arduino using either the
SPI or FC bus.

Figure 23.2 shows the block diagram for
the Lightning Detector. Since you can't always
get lightning to show up when you need it for
testing, a LIGHTNING SIMULATE switch is added so
that we can test the sketch logic and simulate a
lightning strike for demonstrations.

I went back and forth over what type of
display to use with this project. The
small 128 x 32 pixel organic LED
(OLED) display I originally used
for the Huntsville Hamfest Arduino
forum was really nice and allowed
me to experiment with bitmap
graphic images, but for demonstration
purposes, the display proved to be

u2 MOD-1016 a little on the small side. Instead,

ARRL 1156

we'll use the larger Nokia display,
which will allow us to show more
information on the LCD and is much
more readable.

When you stop and think about
what this project is actually doing,
it's amazing that it can be built using
just nine signal wires (not including
power and ground connections). Once
again, this shows that you can create
some pretty sophisticated projects
with the Arduino without the need for
a lot of external components. Figure
23.3 shows the Fritzing diagram for
the Lightning Detector project. You'll
notice that we don't have any pull-
up resistors on the FC connection
to the lightning sensor module. The
Embedded Adventures MOD-1016
has the necessary FC pull-up resistors

Lightning Detector 23-3

Start

already installed on the module, along with a small external loop antenna the
AS3935 uses to receive the 500 kHz lightning signals.

The Sketch
Writing the sketch for the Lightning Detector is almost as easy as wiring it

up. The hardest part was finding an Arduino library for the PC version of the
AS3935. The Embedded Adventures MOD-1016 is pre-wired to use the PC bus
for communication. You can change the soldered jumpers on the board to use
the SPI bus, but I prefer to use the PC bus when possible, and I really didn't
want to solder on the only lightning detector module I had. Most of the libraries
I found online used the SPI bus to communicate with the Arduino. Once again,
the Open Source community rides to the rescue. I was able to locate a modified
version of the SPI-based library that works with the PC version of the AS3935,
and the sketch was good to go.

With the circuit wired up on the breadboard, we can get started on the
sketch. Using the flowchart in Figure 23.4, you can see that the plan is to wait
for a lightning event and display the information about the lightning strike on
the Nokia LCD. We'll keep track of the time since the last lightning strike and
display that also. We'll be using libraries for the AS3935 and the Nokia display,
which will help to simply the work we have to do to create this sketch. The
complete sketch for the Lightning Detector project can be found in Appendix A
and online at www.wSobm.us/ Arduino.

As we start out with the sketch you'll see that we use the debug mode to
provide extra diagnostic information as we test and debug the sketch:

#define debug 1 II Enab l e s full diagnostic

repor t ing

Include Libraries II I 2C a nd AS393 5 Lib r a ries
Define Variables

Setup Lightning Detector
Setup Nokia LCD

i
Setup 11

Setup 1/0 pins
Initialize Lightning Detector

Initialize Nokia LCD

-'

+
Loop

Update Event Times
Check for Event
Display Event

ARRL 1157

Figure 23.4 - Lightning Detector
flowchart.

23-4 Chapter 23

I

#inclu de " I2C . h " II Use the I2C Library

#include <AS3935 .h> II Use the AS4935 Library

#i nclude <LCD5110 Bas i c .h> II Use the Nokia 5110

LCD Li bra r y

i nclude <Wire .h> II I nc lude the Wire

Commun i cat ion Li b ra ry

Next, we'll define the Nokia LCD and the AS3935 objects
for the library.

I *
I t is assumed that t he LCD module is connected to

the follow i ng pins.

*I

CLK - Pi n 12

DIN - Pi n 11

DC - Pin 10

RS T - Pin 8

CE - Pin 9

LCD5110 glcd(12,11,10,8,9); II Assign the Nokia 5110 LCD Pins

extern uint8 t SmallFont[J; II define the Nokia Font

II Lightning Detector library object initialization

II First argument is interrupt pin, second is device I2C address

AS3935 AS3935(2,3);

Note that we've defined the AS3935 address as 3. The AS3935 is jumper
selectable to one of four different PC address, but we'll be using the default
address that the MOD-1016 module is preset to. Next, we'll define the Arduino
1/0 pins and AS3935 internal registers and settings we'll be using:

#define IRQ_PIN 2 II Define Pin 2 for the Interrupt from the Detector Module

#define SIMULATE PIN 7 II Define Pin 7 for the Lightning Simulation switch

II Delay to allow Detector Module settling after startup

#define holddown time 20

II Defines the Register for the High order bits of the lightning energy

#define AS3935_ENERGY HIGH Ox6,0xlf

II Defines the Register for the Middle order bits of the lightning energy

#define AS3935 ENERGY_MID Ox5, Oxff

II Defines the Register for the Low order bits of the lightning energy

#define AS3935_ENERGY_LOW Ox4,0xff

#define NoiseFloor 2 II Define the Noise Floor Level

#define SpikeReject 2 II Define the Spike Rejection Level

#define Watchdog 2 II Define the Watchdog Setting

In the last part of the initialization portion of our sketch, we'll define all the
variables we'll need:

II Set the Recommended Value of the Detector Tuning Capacitor

II This is the value that comes printed on the module packaging

int recommended_tune cap=5;

int test; II calculated tuning cap value

int strokeintensity; II The intensity of the strike

int simulated; II Indicates if strike is simulated

in t irqSource; II The sou r ce of the AS3935 interrupt

int strokeDistance; II the distance of the strike

int holddown = 1; II Set the Flag indicating startup

long last e vent= O; II Holds the time of the last event detected

long last tick =0; II the time of the last minute "tick" in millis()

long current_time; II the current time in millis()

II the difference in millis() between last "tick" and the last event

long time;

Lightning Detector 23-5

II Used to calcluate the intensity of the strike

long strokeEnergyHigh, strokeEnergyMid, strokeEnergyLow, strokeTotal;

II The lines of text for the Nokia display

String textl, text2, text3, text4, text5, text6 = " ''· '

In the setup () loop, we'll start the serial port so we can use the Arduino
IDE's Serial Monitor to see the diagnostic information as we test the sketch.
Then we'll start up the FC bus and set the bus speed to the default speed of
100 kHz. We need to be sure we're at the standard FC bus speed of 100 kHz
to ensure the operating frequency of the bus is not near the 500 kHz receive
frequency of the Lightning Detector. If we were to run the FC bus in Fast Mode
at 400 kHz, we run the risk of interfering with the Lightning Detector's receiver,
potentially causing missed lightning events. Since we go through a tuning test
and verification as part of the setup () loop, this portion of the sketch is a
little more involved than usual.

Serial.begin(9600); II set the Serial USB port speed

llI2C bus initialization

I2c.begin ();

I2c.pullup(true);

I2c.setSpeed(0); lllOOkHz

pinMode(IRQ_PIN, INPUT); II Setup the Detector IRQ pin

pinMode(SIMULATE PIN, INPUT); II Setup the Lightning Simulate Button

II enable the pullup resistor on the Simulate pin

digitalWrite(SIMULATE PIN, HIGH);

II Randomize the Arduino's random number generator

randomSeed(analogRead(O)); II seed the random number generator

simulated = LOW; II reset the simulate flag

Next, we'll start the Nokia 5110 LCD and display a brief startup message so
we know everything is working to this point:

II Set up the Nokia 5110 Display

glcd.InitLCD(65); II Initialize

glcd.setFont(SmallFont); II Use Small Font

cleartext(); II clear the text values

textl

text2

text3

"KW5GP";

"Lightning";

"Detector";

text6 "Initializing";

updatelcd(); II update the LCD

23-6 Chapter 23

In my early tests of the AS3935 communications, I had some problems
verifying that the AS3935 was communicating correctly with the Arduino. The
I 2 C . h library incorporates a bus scan function that will display a list of all the
PC devices on the Arduino ID E's Serial Monitor. If the debug mode is enabled,
it will run the PC bus scan function.

II If the debug flag is set, provide extra diagnostic information

if (debug == 1)

{

II verify that we can see the Lightning Detector (should be at Ox3)

Serial.println("Scan I2C Bus");

I2c.scan(); II Run the I2c Bus Scan function

Once we have verified that the AS3935 is communicating, we'll have it
perform a reset and then set up the noise floor, spike rejection and watchdog
settings. We'll include a delay between commands to allow the AS3935 time to
process the commands.

II reset all internal register values to defaults

AS3935 .reset(); II Reset the AS3935

delay(lOOO); II Wait a second for things to settle

II Set the Noise Floor, Spike Rejection and Watchdog settings

AS3935 . setNoiseFloor(NoiseFloor); II Set the Noise Floor Level

delay(200);

AS3935.setSpikeRejection(SpikeReject); II Set the Spike Rejection Level

delay(200);

AS3935 . setWatchdogThreshold(Watchdog); II Set the Watchdog Leve l

delay(lOOO);

In the next portion of the setup () loop, we have some additional
diagnostic code to show the results of the AS3935's tuning process. The
AS3935 library includes a function to calculate the value of the capacitor used
to tune the external antenna. The Embedded Adventure modules are pre-tested
and the recommended value of the tuning capacitor is printed on the module
package. As a general rule, you'll want to use their recommended value, but
we'll include the library's tuning function as part of our diagnostic code to
double check the AS 3 9 3 5 . h library's tuning capacitor function's suggested
value against the recommended value.

II The Embedded Adventures MOD-1016 includes the

II recommended Tuning Capacitor Setting on the package

II This Debug calibration routine is for testing and verification purposes

if (debug== 1) II run calibration if debug flag set

Lightning Detector 23-7

II if lightning detector cannot tune tank circuit to required tolerance,

II calibration function will return false

if(!AS3935.calibrate())

Serial.println("Tune Error");

delay(500); II Wait for things to settle

II read and display the current Tuning Cap value

test = AS3935.registerRead(AS3935 TUN CAP);

delay(500);

Serial.print("Tuning Cap: ");

Serial.println(test,HEX);

Once we have verified the tuning capacitor value, we'll set it to the
recommended value, and read it back from the AS3935 to verify that the setting
is correct:

II Set the Tuning Cap register to the value recommended

Serial.println("Set Tune Cap Reg");

II Write the recommended value to the Tuning Capacitor Register

AS3935.registerWrite(AS3935 TUN CAP,recommended_tune cap);

delay(500); II Wait for things to settle

II verify the tuning cap value is set correctly

test= AS3935.registerRead(AS3935 TUN CAP);

delay(500);

Serial.print("Tuning Cap: ");

Serial.println(test,HEX);

I*

Next, you will see a block of code that has been commented out. The
AS3935 uses three internal oscillators to generate clocking signals. The LC
oscillator (LCO) runs at the resonant frequency of the antenna and tuning
capacitor, which should be around 500 kHz. The system RC oscillator (SRCO)
typically runs at 1.1 MHz and the timer RC oscillator (TRCO) runs at 32.768
kHz. The AS3935 has the ability to send the output of these three internal
oscillators to the IRQ pin for monitoring. The AS3935 library uses the output
of the LCO as part of the function to calculate the tuning capacitor value.
You can use an oscilloscope or a frequency counter to measure and fine-tune
these settings if desired. In normal operation these oscillators are calibrated
at initialization by the AS 3 9 3 5 . h library and you'll find that the library
calibration settings work just fine.

Serial.println("Set Disp LCO Reg 8 Bit 7");

AS3935.registerWrite(AS3935_DISP_LCO,l);

delay(lOOOO);

AS3935.registerWrite(AS3935 DISP LC0,0);

Serial. println ("LCO disp complete") ;

23-8 Chapter 23

Serial . println("Set Disp SRCO Reg 8 Bit 6");

AS3935.registerWrite(AS3935 DISP SRCO,l);

delay(lOOOO);

AS3935.registerWrite(AS3935 DISP SRC0,0);

Serial . println("SRCO disp complete");

*I

In the last portion of the set up () loop, we'll finish setting up the AS3935,
set the receiver gain for indoor use, disable the Disturber (EMI) interrupts since
we're only looking to see lightning and not man-made noise events (more on
this later), and print the contents of the important AS3935 registers to the Serial
Monitor one last time to ensure everything is set up correctly. We'll then clear
the interrupts on the AS3935 to be sure we have a clean start with no false
lightning events, and display a "No Activity" message on the Nokia LCD.

II tell AS3935 we are indoors, for outdoors use setOutdoors() function

AS3935.setindoors(); II Set Gain for Indoors

II AS3935.Set0utdoors; II uncomment to set Gain for Outdoors

delay(200); II Wait for things to Settle

II Uncomment to turn on Disturber Interrupts (EMI)

llAS3935.enableDisturbers();

II We only want Lightning, turn off EMI interrupts

AS3935.disableDisturbers();

delay(200); II Wait for it things to settle

printAS3935Registers(); II Display the AS3935 registers

II c l ear the IRQ before we start

int irqSource = AS3935.interruptSource();

de l ay(500);

Serial . println("Detector Active"); II And we're ready for lightning

cleartext(); II Clear all the LCD text variables

text3 = "No Activity";

updatelcd(); II Update the LCD

In the main loop (),we'll start out with a one minute timing check. The
Lightning Detector will update the Nokia LCD once a minute and indicate
the time since the last event occurred. If a lightning strike is detected, its
information is immediately displayed and the time since the last event is
restarted.

II Check and update timestamp

current time= abs(millis())llOOO;

if (curren t time - last tick >= 60)

II One Minute has passed

II Current time (seconds since start)

II Run if 60 seconds has passed

Lightning Detector 23-9

Serial.print("Tick ");
Serial.print(current time); II Print the current time

Serial.print(" ");

Serial.print(last_tick); II Print the previous time

Serial.print(" ");

last tick = current time; - -
II convert to minutes and hours
II convert difference last event to current time into seconds

time = last tick - last event;

Serial.print(time);

if (time >=60) II One minute has passed

time = timel60;

text6 = String(time);

if ((time >= 1) && (time <60))

II 1 to 59 minutes ago

{

text6 = text6 + " min ago";

else {

if (time >=60)

time = timel60;

II convert to hours

text6 = String(t ime);

if (time >=l)

if (time == 1)

text6 = text6 + " Hour ago";

else {

text6 = text6 + " Hours ago";

updatelcd(); II Update the LCD with time since last event

Serial.println(" "+ text6);

23-10

Before we allow the Lightning Detector to start detecting events, we add a
brief "hold down" time immediately after starting up to allow the AS3935 to
settle out and build its initial statistics that it uses in the lightning calculations.

Chapter 23

II Delay the start for a few seconds to let everything settle

if (holddown == 1)

if ((millis()llOOO) > holddown time) II If we've passed the hold down time

{

holddown = 0; II Turn it loose

e l se { II Hold Down has already expired, watch for lightning

Now we're ready and waiting for a lightning or simulation event. First, we'll
check and see if the LIGHTNING SIMULATE switch has been pressed:

II Check for a simulation

if (digitalRead(SIMULATE PIN) == LOW)

simulated = HIGH; II Turn on the simulated flag

II disable the simulate button for 1 second to debounce the switch

delay(l000);

Serial.print("Sim Button");

else {

simulated = LOW; II Make sure we turn off the simulated flag

Next, we'll check to see if the AS3935 has generated any interrupts:

II If we have a real or simulated event let's do it

if ((digitalRead(IRQ_PIN) == HIGH) 11 (simulated))

II if it's a real event, use the actual interrupt

II otherwise set the IRQ code for lightning

if (!simulated) II It's not simulated, get the IRQ from the AS3935

delay(200); II wait for interrupt register to settle

irqSource = AS3935.interruptSource(); II Read the AS3935 IRQ Register

Serial.print("Real Irq ");

else {

II It's a simulation - pretend it's actual lightning

irqSource = OblOOO; II Set the IRQ code for lighting

Serial.print("IRQ: ");

Serial .print(i rqSource);

Serial.print(" ");

Now we'll process the interrupt type. The AS3935 has four types of
interrupts. An interrupt value of 0 (no IRQ register bits set) indicates that the
AS3935 has purged its internal statistics. This is a normal event that occurs
about 15 minutes after the last interrupt event occurs. An interrupt value of 1
(IRQ register bit 0 is set) indicates that a Noise High interrupt has occurred,
while an interrupt value of 4 (IRQ register bit 2 is set) indicates that a Disturber

Lightning Detector 23-11

(EMI- man-made noise) interrupt has occurred. An interrupt value of 8 (IRQ
register bit 3 is set) indicates that lightning has been detected. If you have
the Disturbers disabled, the only interrupts the AS3935 will generate are the
Statistics Purge and Lightning Detected events.

When an AS3935 interrupt is detected, we create a timestamp so we can
track how long ago the event occurred.

II The first step is to find out what caused interrupt

II as soon as we read interrupt cause register, irq pin goes low

II The returned value is bitmap field, bit 0 - noise level too high,

II bit 2 - disturber detected, and finally bit 3 - lightning!

II Create timestamp so we know when it occurred

II IRQ value of 0 is a stat purge, we don't want to do anything with it

if(irqSource != 0)

II Create a timestamp for the event

timestamp(); II Run the timestamp function

text6= "Now"; II Set the Text time of the event to "Now"

Now we'll start decoding the interrupts and displaying the results to the
Nokia LCD. The first two interrupts are the Noise High and Disturber (EMI)
interrupts. We don't do anything with this other than display the type of
interrupt and how long ago the last event occurred:

if (irqSource & ObOOOl) II Noise Level High Interrupt

text3 = "Noise High";

if (irqSource & Ob0100) II Man Made Disturber (EMI) Interrupt

text3 = "EMI Detect";

Here's where the fun starts. We'll handle the interrupt for lightning. This
can either be an actual lightning interrupt from the AS3935, or it can be a
simulated lightning event. The AS3935 will report the estimated distance of the
strike in 16 ranges.

if (irqSource & OblOOO) II It ' s Lightning or a Simulation

II We need to find distance of the lightning strike,

II The function returns the approximate distance in kilometers,

II where value 1 represents storm in detector's near victinity,

II and 63 - very distant, out of range stroke

II everything in between is the distance in kilometers

23-12 Chapter 23

text2 = "Detected";

if (simulated) II make up a distance if we're faking it

strokeDistance = int(random(45)); II Pick a distance betwee n 1 and 44)

II If a real strike i s less than 5km, the AS3935 will report that

II it's "Overhead", so we match that

if (strokeDistance < 5

strokeDistance = l;

textl = " Simulation" ;

e l se { II otherwise , it 's lightning get the real distance

II It ' s real lightning, read the AS3935 Distance Register

strokeDi stance = AS3935.lightningDistanceKm();

textl = "Lightning"

Once we get the distance, we'll format this information for display at the
next Nokia LCD update:

II The AS3935 Reports Lightning distance as Out of Range ,

II 40 , 37 , 34 , 31 , 27 , 24 , 20 ,1 7 ,14,12,1 0 , 8 , 6 , 5 , 0verhead

if (strokeDistance < 5)

text3 = " Overhead" ;

if (strokeDistance > 40)

text3 = "Out of Range" ;

if (strokeDistance <= 40 && strokeDistance >= 5)

text3 = String(strokeDistance) + " km away";

Next, we'll get the energy of the detected strike. If this is a simulation,
we'll make up the numbers. Once we have calculated the estimated energy
of the strike, we'll scale the energy value from 1 to 10 to create an arbitrary
"Lightning Intensity Factor." We'll then format this information to display the
next time we update the Nokia LCD.

if (simulated) II Make up the energy of the stroke

II There are 3 registers containing strike energy

strokeEnergyHigh = int(random(31)) ;

strokeEnergyMi d = int(random(255));

strokeEnergyLow = int(random(255));

else { II otherwise get the real energy

Lightning Detector 23-13

II Read the 3 AS3935 Strike Energy Registers

strokeEnergyHigh = AS3935.registerRead(AS3935_ENERGY_HIGH);

strokeEnergyMid AS3935.registerRead(AS3935_ENERGY_MID);

strokeEnergyLow = AS3935.registerRead(AS3935_ENERGY_LOW);

II Calculate the total Strike Energy
strokeTotal = strokeEnergyLow + (strokeEnergyMid*256)+ (strokeEnergyHigh*65536);

II Map the energy to an arbitrary Intensity Factor of 1 thru 10

strokeintensity = map(strokeTotal,1,2000000,1,10);

text4 = "Intensity: " + String(strokeintensity);

Finally, we'll output the information to the Nokia LCD.

if (irqSource == 0) II It' s a Statistics Purge, we ignore these

II The AS3935 will Purge old lightning data automatical l y

Serial.print(" Stats Purged");

else {

updatelcd(); II Update the LCD wi th the Event Data

Serial.print("Time: ");

Serial.print(" ");

Serial.print(last event);

Serial.print(" "+textl);

II Serial.print(text3);

II Display the information if it's a lightning event

if (irqSource & OblOOO)

Serial.print(" Energy: ");

Serial.print(String(strokeTotal));

Serial.print(" Dist: ");

Serial.print(strokeDistance);

Serial.print("");

Serial.print("Intensity: ");

Serial.print(strokeintensity);

Serial.print("");

There are four functions used to support the Lightning Detector sketch.
The printAS3 935Registers () function is used to display the contents
of the key AS3935 registers. The times tamp () function is used to create a
times tamp to keep track of the time of an event. The update l c d () will clear
the Nokia LCD and display the current contents of the LCD text variables. The
cleartext () function is used to clear the contents of the LCD text variables
in preparation for the next display update.

void printAS3935Registers() II Display the basic AS3935 Registers

23-14 Chapter 23

II Read the Noise Floor setting

int noiseFloor = AS3935.getNoiseFloor();

II Read the Spike Rejection setting

int spikeRejection = AS3935.getSpikeRejection();

II Read the Watchdog Threshold setting

int watchdogThreshold = AS3935.getWatchdogThreshold();

Serial.print("Noise floor: ");

Serial.println(noiseFloor,DEC);

Serial.print("Spike reject: ");

Serial.println(spikeRejection,DEC);

Serial.print("WD threshold: ");

Serial.println(watchdogThreshold,DEC);

II stores the millis() time of the last event in seconds

void time stamp ()

last event= abs(mi lli s()llOOO);

II clears LCD display and writes the current LCD text data

void updatelcd ()

II

glcd.clrScr();

glcd.print(textl,CENTER,0);

glcd.print(text2,CENTER,8);

glcd.print(text3,CENTER,1 6);

glcd.print(text4,CENTER,24);

glcd.print(text5,CENTER,32);

glcd.print(text6,CENTER,40);

clears the LCD text data

void cleartext()

textl " " . ,
text2 textl;

text3 textl;

text4 textl;

text3 textl;

text4 textl;

texts textl;

text6 textl;

Lightning Detector 23-15

+3.3 v
i· 'f

6

R1

Now, here's the hardest part of the whole project - finding lightning
to detect. When I finished building my Lightning Detector prototype on the
breadboard, I spent weeks waiting for a lightning storm to pass through. I used
the LIGHTNING SIMULATE button to test things, but it's just not the same without
real lightning. Finally the day came when I woke up to lightning, and up popped
all the lightning events. It was a bit difficult to debug things and figure out
what an interrupt value of zero (Statistics Purge) was, and why I kept getting
it 15 minutes after lightning was last detected. It's documented in the AS3935
datasheet, buried as one line in the fine print. Once I had that figured out, it was
time to move everything into a nice enclosure for demonstrations.

U3 Nokia 5110

:E 0 ~ f-

"' z -' ~ u w (/)
:.J l? u 0 0 u a:::

7 8 5 4 3 2 1 +3.3 v

Vee
U2 2 220 0

S2
Lightning
Simulate

d ~ ~ ~ ~ ~ ~ ~ ~ ~ b 8 ~ d 8 ~ 0 8
CIJCfJa:::l?oooo

I <(
I
I
I
I
I U1
I
1 Arduino Uno R3
I
I
I --+-,

[jJ I I
> I I

ffiLLGJ N~ ~d
(/) w (/) 0 0 (/) (/)
W O:::Q W > > Z Z ~ O ~ ~ M ~ ~
0::: - 0::: M ~ (.? (.? > <(<(~ <(<(<(

3

4

5

6

7

cs
IRQ MOD-1016
SCL AS3935

MISO
Lightning
Sensor

SDNMOSI

GND

ARRL1158

Figure 23.5 - Lightning Detector schematic diagram.

D1 - 1 N4001 diode. U2 - Embedded Adventures MOD-1016
lightning sensor. R1 - 220 n, 1/a W resistor.

S1 - SPST switch.
S2 - SPST momentary contact switch.
U1 - Arduino Uno.

23-16 Chapter 23

U3 - Nokia 5110 LCD display.
Arduino Uno Enclosure

Careful Packaging is Needed
Using the schematic diagram in Figure 23.5, the finished project was built

on an Arduino protoshield, mounted on top of the Arduino Uno, and everything
was mounted in a Solarbotics Arduino Mega S.A.F.E. enclosure. Then it
was back to waiting for the next thunderstorm to test the finished project.
Unfortunately, it was weeks before the next storm, and the discovery of the last
little glitch in the project.

I had originally placed everything inside the enclosure, mainly to protect the
Nokia LCD and the fragile-looking antenna on the AS3935 module. Let's back

Figure 23.6 - The finished Lightning
Detector module mounted on its mast.

up and review how the AS3935 actually works. For all
intents, it is a narrowband receiver tuned for 500 kHz.
In my initial design, I had mounted the AS3935 module
inside the enclosure near the Arduino Uno. As it turns
out, the Uno generates your typical low-grade RF noise
from its 16 MHz oscillator and various clock signals,
including the PC bus. The Nokia 5110 LCD display also
generates some RF noise as it scans and displays the
pixels on the LCD. These factors combined to interfere
with the reception on the AS3935 module, and it would
not detect lightning very well at all. The performance
was nowhere near as good as it had been when it was
on the breadboard. I tried various types of displays and
configurations, having to wait for thunderstorms after
each new design was mounted in the enclosure.

As a last resort, I moved the AS3935 outside the
Arduino enclosure onto a small wooden mast to provide
some added distance from the noisemakers inside the
enclosure. At one point, I had three different versions of
the Lightning Detector sitting around the house waiting
for a storm. As luck would have it, a fairly rare winter
thunderstorm came rolling through one morning, and
I was finally able to verify my suspicions about the
RF noise and determine which design worked best.
The winning design can be seen in Figure 23.6. As a
final touch, we'll use a ping-pong or plastic golf ball to
provide some measure of protection and make the project
look like it has a little radome to add to the cuteness
factor.

Enhancement Ideas
Now that we have a working Lightning Detector,

there are all sorts of interesting features we can add.
After building this project, I discovered the Parallax/
Grand Idea Studios Ernie 2 text-to-speech module we
used in previous projects in this book. Adding voice
output to the Lightning Detector project opens up a
world of possibilities. You can drive a PA system at Field

Lightning Detector 23-17

23-18

Day to announce lightning in the area, or you can just have it on your desk to
tell you when lightning is nearby. If you didn't want to use a voice module,
you could have the Lightning Detector sound an alert tone when lightning is
detected.

Also, I've never been all that happy with the way I handle the timing of the
events and the one-minute "tick." This project would be a perfect candidate to
play with the Arduino's timer interrupts, and move the timing operation into a
software timer interrupt-driven function.

Since my original design concept for the Lightning Detector project called
for it to disconnect my antennas in advance of a thunderstorm and reconnect
them after the storm had passed, adding the ability to control an antenna relay
box would complete the project for me. I didn't have a whole lot of luck finding
a relay made exclusively for switching antenna coaxial cable at an affordable
price, but I did find an article in the April 2005 issue of QST that will fit the
bill nicely. "A Low-Cost Remote Antenna Switch" by Bill Smith, K04NR (see
References) looks like it will do everything my original concept called for.
Once I get that put together and hooked up, I can head out of town secure in
the knowledge that the Lightning Detector back at home is safeguarding my
equipment.

References
Arduino PC Master Library - www.github.com/rambo/12C
AS3935 Arduino Library - www.github.com/SloMusti/AS3935-

Arduino-Library
Austriamicrosystems AG - www.austriamicrosystems.com
Embedded Adventures - www.embeddedadventures.com
Solarbotics - www.solarbotics.com
B. Smith, K04NR, "A Low-Cost Remote Antenna Switch," QST, Apr 2005,

pp 38-41. This project also appears in the Station Accessories chapter of recent
editions of The ARRL Handbook.

Chapter 23

CHAPTER 24

COE/Hy-Gain Rotator
Controller

Homebuilt COE/Hy-Gain rotator controller.

How many times have you come across an antenna rotator at a hamfest that
didn't have the control box? Or maybe lightning zapped your rotator control
box and now you have a working rotator motor, but no way to turn it. Replacing
an antenna rotator control box can get expensive, assuming you can even find a
working one.

Not long ago, a friend of mine, Shawn Braddock, W5SMB, was faced with
this very dilemma. Shawn had acquired a tower with a rotator, but the rotator
controller had long since gone missing. Since I've done a lot of tinkering with
the Arduino and the Yaesu rotator controllers, I offered to build an Arduino
based controller for his CDE/Hy-Gain HAM-III rotator. This was going to
be a fun challenge. I would have to build the controller completely from
scratch based on the original HAM-III schematics I managed to find online,
and adapt the rotator for Arduino control. (HAM series rotators have been
used by amateurs for decades. They were originally made by Cornell Dubilier
Electronics - CDE - and are now made by Hy-Gain, which is now part of
MFJ. The HAM-M, HAM-II, HAM-III, HAM-IV, HAM-V and Tailtwister
models all will work with this Rotator Controller project.)

I really didn't want to just duplicate the existing controller with an analog
position meter and some switches. If there's an Arduino under the hood, why
not use it and kick things up a notch? The plan is to use an analog-to-digital

COE/Hy-Gain Rotator Controller 24-1

Rotator

Relay Control
and

Postion Sense

ARRL1159

16x2 I 2C LCD

Rotator Drive
and

Position Sense
Arduino Uno

Direction~
Control

Figure 24.1 - Rotator Controller block diagram.

RGB LED

(AID) converter to sense the rotator position, and have the Arduino drive
relays to control the rotator brake and activate the drive motors. Because we're
controlling all this with an Arduino, let's add in a brake delay that's not in the
standard CDE/Hy-Gain rotator controller. We'll replace the analog meter with
a 16-character by 2-line (16x2) LCD display, plus we'll add an RGB LED to
show the drive motor and brake status.

Now that we know what we're planning to have our rotator controller
do, we'll start out with the block diagram in Figure 24.1. We'll use a two
position center-off switch to tell the Arduino which way to tum the rotator. To
do the actual motor and brake control, we'll have the Arduino drive three 5 V
relays with 10 A contacts. For the rotator position sensing, we'll use a Texas
Instruments ADSl 115 4-channel 16-bit PC AID converter to read the voltage
coming in from the 500 Q variable resistor mounted inside the rotator housing.
Finally, we'll display the antenna heading on a 16x2 LCD in place of the analog
meter used in the CDE/Hy-Gain control box. We'll have the Arduino display the
antenna bearing in degrees and for fun, we'll also have it display direction arrows
when the rotator is turning, and display a message when the rotator is braking.
We'll also use an RGB LED to indicate the drive relay status just for kicks.

Packaging
Since we're going to need an enclosure for the main rotator power

transformer and all the rest of the goodies, we can't use a standard Arduino
enclosure like we've been using. Putting all this in an Altoids mint tin is
certainly out of the question. For this project, we're going to need a bigger box.
The HAM-III rotator brake solenoid and motors run on 26 V ac at about 3 A. I
bought a used HAM-III controller power transformer online from C.A.T.S. for
$25 since there wasn't much hope of finding one locally. That turned out to be
the most expensive part of the whole project. That's part of the fun about the

24-2 Chapter 24

Arduino. You can create some very complex projects and they're not going to
cost you an arm and a leg. The total cost for this entire project ended up around
$80. That's less than the cost of a used CDE/Hy-Gain controller, and you won't
have anywhere near the fun and sense of accomplishment. Not to mention, the
standard CDE/Hy-Gain controllers don't have a brake delay or PC interface,
so computer control isn't even a possibility without spending a whole lot more
money. Once we have the basic controller up and running, all it takes is a little
extra software to add in the interface for Ham Radio Deluxe or other rotator
control software for your PC.

The next order of business was to find an enclosure large enough to house the
transformer and everything else mounted inside. All of the enclosures available
locally were just a little too short to house the power transformer. After searching
around for an enclosure big enough to hold everything, but not so big as to put
a dent in my budget, I found the perfect selection of enclosures on TEN-TEC's
website. As it turns out, not only does TEN-TEC make radios, they also sell a
complete line of very affordable enclosures. For this project, I chose the TP-49
enclosure in the aluminum finish at a cost of $12. The TP-49 measures 3.25 x
7.75 x 6.25 inches (height, width, depth), perfect for what we've got in mind.

Now that we've got all the major pieces figured out, it's time to start
building our rotator controller. This will be a two-pronged approach. We'll
need to mount everything inside the enclosure, but, since the enclosure is a
plain box, we're going to need to cut some holes and figure out how to mount
things. Before we can start to build the rotator controller, we'll need to design
the circuit and wire everything inside the enclosure. Because we're dealing with
high voltage, we're not going to test this project on the breadboard. Instead,
we'll build everything directly in the enclosure, and do all our testing with the
actual finished controller.

Circuit Details
Even though we're not going to use the breadboard for this project, I still

like to create both a schematic diagram and a Fritzing diagram. Since a Fritzing
diagram is more of a physical representation of the circuit, I find it easier to use
the Fritzing diagram as a wiring guide and check things off on it as I go. I like
to use the schematic diagram in the final steps of construction to verify all the
connections and do any circuit troubleshooting that may be needed.

Figure 24.2 shows the Fritzing diagram for the CDE/Hy-Gain Rotator
Controller project. Don't let the apparent complexity fool you. Many of the
components will be mounted on an Arduino protoshield that will be plugged
onto the Arduino expansion shield headers, and we' ll use header pins and
sockets for wiring that connects to the external relays, LCD, switch, and other
parts. Since we want this to be a standalone rotator controller, we'll also add in
a small 12 V power supply to provide the current needed to power the Arduino
and drive the relays . The circuit may look daunting, but you'll find that the
actual wiring of the project goes smoothly and easily. The hardest part is cutting
all the holes and mounting everything in the enclosure.

Since we're going to be wiring everything in the enclosure, we'll also want
to have the schematic diagram (Figure 24.3) handy. Before we can begin the
actual wiring, we'll need to figure out how and where we're going to mount

COE/Hy-Gain Rotator Controller 24-3

ARRL1160

U3
16x2 Serial 12C LCD

S4
360 Cal ..
"'tr

'I

J1

l!!IJ;;

T2

AC Power

Figure 24.2 - Rotator Controller Fritzing diagram.

I

Figure 24.3 - Rotator Controller schematic diagram.

C1 - 120-140 µF, 220-2SO V ac motor capacitor.
C2 - 1 µF, 16 V capacitor.
C3 - 100 µF, 16 V capacitor.
C4, CS - 0.01 µF, 3S V capacitor.
C6 - 1000 µF, 3S V capacitor.
01-04 - 1 N4001 diode.
DS1 - s mm RGB common cathode LED.
F1 -3 A fuse.
J1 - AC power plug.
J2 - 2 pin jumper header.
J3 - 8 pin header to connect to rear panel

connector to rotator.
K1-K3 - S V SPST relay, 10 A contacts.
01-03 - 2N2222A transistor.
R4, R8, R9 - 4. 7 kn, Ya W resistor.

24-4 Chapter 24

COE Rotator Controller

D2
CCW (Left) Drive 1 N4001

02
2N2222A

_..,__
R2 CW (Right) Driv
4700 01 l!I

2N2222A ffi

h1 F1
t1:j 3A

R1
4 on

,,
--~

D3
1N4001

K3

D1
1N4001

Brake Drive

K2

03
2N2222A

J3

To Rotator

R1, R2, R3, RS, R6, R7 - 470 n, Ya W resistor.
S1 - SPST switch.
S2, S4 - SPST momentary pushbutton switch.
S3 - SPOT switch, center off.
T1 - COE/Hy-Gain 26 V ac rotator controller

transformer.
T2 - 12.6 V transformer.
U1 - Arduino Uno.
U2 - ADS111 S 16-bit AID converter module.
U3 - 16x2 12C LCD.
U4 - Bridge rectifier.
US - LM7812 voltage regulator.
Fuse Holder
Ten-Tee ModelTP-49 Enclosure

(")
c
[!!
:c
'<

I

G)
II>
:::s
:D s.
II> -0 ...
(")
0
:::s -0
CD' ...

N
~
I

(11

R5
470

DTR 1
Reset 2

Disable

360
CALIBRATE

Po

J2

ARRL1 161

ZERO
CALIBRATE

?o
~ R2

I I I 470

R3

'VY-
470

~ ~ U.. 0 M N ~ 0 m 00
u 0 w z ~ ~ ~ ~ 0 0
C/J(/)Cl'.'.(.?oooo

b (3 ~ 3 8 ~ 0 8
I I <{

I I
I I
I I
I I

U1
Ar du i no Uno R3

'- I -=--=--=--=--=--=--=--=--=--=--=--= I 0
w
>
Cl'.'.
w
Cf)
w
Cl'.'.

U.. tLi N ~ w Cf) 0 0
Cl'.'.W>>ZZ~
QCl'.'.MLOl?l?>

I I I I I I I

I I
<{ -'
0 u
Cf) Cf)

~ :;: ~ ~ ~ ~

R1

470

U5
7812

Q2

Q1

Q3

+5V K2 Left(CCW) ,---,
I

~25Vac

r----

1
I

S1

U4

D4 _,._ • • • I I I Out REG In I • I
12.6
Vac

1 N4001

+
C6__C4

1000 µ'l].01 +5V

(.)

R9
4.7 k

Gnd

C5 ;+;0.01

+5 v U2 +5V

ADS1115
Ra I 16-bit r2c ADC

4
.
7

k 8 VDD AINO 14 l I
R4~4.7 k

~
<{ -'
0 u
Cf) Cf) '-----f!----<l>----1-0; SCL A IN1

+

U3 16x2 I2C LCD

. -

'-------<~----9-t SDA AIN2

ADDR AIN3

~ALERT
3 IGND

C31100 µF

J3

everything in the enclosure. Since this involves cutting holes, we'll start by
preparing the enclosure.

First, we'll cut out a hole for the 16x2 LCD and find a place to mount the
big power transformer. I used a drill and a nibbler to cut out the holes to the
approximate shape and then filed the area smooth. Fortunately, the aluminum
enclosure was easy to work with and the hole-cutting went smoothly. Figure
24.4 shows the results.

24-6 Chapter 24

Figure 24.4 - Rotator Controller chassis showing power
transformer mounting and LCD cutout.

~ ~
.i -

I .
2·(.

.

JJ. .,: ..

-!'
~sE

14,}1'< ' .. "-... ~
"'"'

Figure 24.5 - Rotator Controller chassis rear view.

Figure 24.6 - Rotator Controller front view.

On the rear of the enclosure (Figure 24.5), we'll need to cut out the holes
for the ac power socket, fuse holder, rotator connector, and the Arduino's USB
connector. We'll want the Arduino's USB connector brought out to the back of
the box so we can hook up a PC to upload the sketch and for interfacing with
Ham Radio Deluxe or other rotator control software at a later date.

Now that we have the locations of the big parts laid out, the next step is to
mount the LCD, POWER switch, ROTATE switch, and RGB LED holder to the
front of the chassis. Four 2 mm socket head screws were used to mount the

Figure 24.7- Pigtail cable used
between rotator controller and the
COE/Hy-Gain rotator.

LCD in its front panel cutout. For the ROTATE switch, a large
double-pole double throw center-off momentary switch was
mounted below the LCD assembly. Figure 24.6 shows the
finished front panel.

The large power transformer is mounted on the rear panel
flange of the chassis itself, along with the ac power socket,
fuse holder, and the AMPffYCO CPC circular socket for the
rotator connector. The rotator connector will connect to a male
circular connector on a short pigtail cable that has Anderson
Powerpole connectors to connect to the rest of rotator cable
(Figure 24.7). Since I use Powerpoles to standardize all my
rotator connections, the pigtail allows for quick and easy
swapping between the Arduino project and a standard CDE/
Hy-Gain rotator controller during test and setup.

Figure 24.8 shows all of the external components
mounted inside the chassis with the Arduino Uno mounted to
the bottom of the chassis with standoffs. The four standoffs

Figure 24.8 - Rotator Controller chassis showing the Arduino mounting point.

COE/Hy-Gain Rotator Controller 24-7

in front of the Arduino will be used to mount the perfboard containing the 12 V
transformer and voltage regulator we'll be using to generate the supply voltage
used to power the Arduino. Since the Rotator Controller is designed to operate
without a PC connected to the Arduino's USB port, we'll be using this power
supply to power the Arduino portion.

The three relays used to drive the brake and rotator motors are epoxy glued
to the top of a small piece of perfboard and mounted on the inside front edge of
the controller box underneath the power switch (Figure 24.9).

24-8 Chapter 24

Figure 24.9 - The relay board mounted behind the front panel
underneath the power switch.

Figure 24.10 - Rotator Controller chassis with all internal
components mounted.

The 12 V power transformer and voltage regulator are installed on a square
piece of perfboard and mounted on top of the standoffs in front of the Arduino
(Figure 24.10). The ZERO and 360° CALIBRATION SET pushbutton switches are
also mounted on the low voltage power supply board. This board will connect
to the Arduino using the right-angle header pins located on the lower right side
of the board.

Now that all the major components have been mounted, it's time to build
the Arduino protoshield that will be used to interface between the all of the

Figure 24.11 - The assembled Rotator Controller protoshield.

Figure 24.12- The completed Rotator Controller chassis assembly.

COE/Hy-Gain Rotator Controller 24-9

24-10

external components mounted in the chassis and the Arduino. The protoshield
will be used to mount the relay drive transistors, the ADS 1115 AID module,
and the other components needed to interface to the rest of the controller. The
components mounted in the chassis connect to the protoshield using DuPont-style
header and socket pin connectors to allow for easy installation and removal of the
protoshield. The finished protoshield is shown in in Figure 24.11.

Figure 24.12 shows the completed wiring of the Rotator Controller chassis.
DuPont-style header sockets have been attached to the leads coming from the
external components to the prototyping shield and the low voltage power supply
is connected. The wiring for the rotator controller is now complete. You can
see that while the wiring looks complex, it isn't really all that hard when you
take it in small steps. For me, the hardest part was figuring out where to mount
everything and to get the holes cut properly.

Software Design
Just as with the chassis construction, the sketch for this project looks

complex, but when you break it down into small functional chunks, you'll see
that it's really not that difficult. In fact, some of the sketch came directly from
the Azimuth/Elevation Rotator Controller project and other sketches we've
created to this point. This is yet another aspect that helps make developing
projects fun. If you build your sketches in a modular fashion, often you can
re-use that code in another sketch, saving you a lot of time by not having to
reinvent the wheel.

Figure 24.13 shows the flowchart we'll use to create the CDE/Hy-Gain
Rotator Controller sketch. When you put aside the thoughts of all that complex
wiring you just did, you'll see that we don't need the Arduino to do all that
much actual work. Once we have everything initialized, the Arduino will read
the rotator position and wait for the ROTATE switch to be pressed. Once the
ROTATE switch has been pressed, the Arduino will energize the rotator brake
release and the appropriate drive motor relay. As the rotator is turning, the
current heading is updated on the LCD, along with an arrow to indicate the
direction of rotation.

When the ROTATE switch is released, the motor relay is de-energized, but
the brake solenoid is held energized for an additional three seconds to allow the
rotator and antenna to coast to a stop. The brake solenoid is then de-energized
and the brake locks the rotator into position.

While the Arduino is waiting for the ROTATE switch to be pressed, it will
also check to see if one of the CALIBRATION SET pushbutton switches has been
pressed. These switches are used to save the AID converter's values for the
current rotator position in the Arduino's EEPROM for the 0° and 360° rotator
position.

Reading the Rotator Position
On my prototype version, everything was going smoothly right to the

point where I tried to read the rotator position while the rotator was turning.
When everything was idle, the position sensing was absolutely perfect. The
problems started when I tried to read the rotator position potentiometer when

Chapter 24

Start

Include Libraries

Setup

Setup 1/0 pins
Initialize LCD

Initialize AID Converter

Loop

Check Rotate Switch

Yes

Yes

Read AID Converter
Display position on LCD

Engage Brake If Was Rotating

Rotator Controller Flowchart

Release Rotor Brake
Energize Motor Relay

Calculate Position
Update LCD and LED

Save Calibration Data
To EEPROM

ARRL1162

Figure 24.13 - Rotator Controller sketch flowchart.

COE/Hy-Gain Rotator Controller 24-11

24-12

the rotator was turning. The HAM series rotators use 26 V ac to drive the
rotator motors and brake solenoid while the rotator is operating. The 26 V ac
used for the brake and motors shares its ground with the 12 V de used for the
rotator position potentiometer mounted inside the bell housing. With the analog
meter in the standard CDE/Hy-Gain rotator controllers, this was not a concern.
However, when you try to read the position potentiometer with a high-speed,
high-resolution AID converter, there is about a half of a volt worth of ac hum
on the ground. I tried every trick I knew to eliminate the ac hum from the de
positioning sensor with no success. After all the work I had done to this point,
it was not looking good for this project at all. In fact, I ended up putting it off to
the side to revisit later, and continued on with the other work.

While researching this project, I had been able to find only one other
Arduino-based CDE/Hy-Gain rotator controller project, and that one required
opening up the rotator bell housing and separating the position potentiometer de
ground from the motor ac ground. While that resolved the ac hum issue, I did
not want a project that required you to go up on your tower and modify your
rotator assembly. These are supposed to be relatively easy projects, and my
design criteria called for no major modifications, if any, to the rotator assembly
itself.

A potential answer came out of the blue in an on-air discussion that I had
with Tim Billingsley, KD5CKP. Unknowingly, Tim planted the seed for the
solution while we were talking about how the standard CDE/Hy-Gain controller
for the HAM-series rotators wasn't all that accurate, and he would generally
move the antennas to position, wait for things to settle, and then move to the
final position. Looking at the standard rotator controller with an oscilloscope
and voltmeter, I saw that it also had the ac hum on the position potentiometer,
but it was only affecting the analog position meter on the regular controller by
a couple of degrees. It turns out the analog meter was seeing the ac hum, but
since it was 60 Hz hum, you couldn't really see it on the front panel meter of
the rotator control box.

So, this meant that reading the position with the AID converter while
the rotator was turning was pretty much out of the question. It looked like that
was the end of the road for this project unless I wanted to modify the position
sensor potentiometer connections inside the rotator housing. Then, Tim's
comment that he moved his antennas to a coarse antenna bearing, and then did
a second move to the final position finally fired enough brain cells to tum on the
old light bulb.

Let's stop and think about the basics of how the rotator does what it does.
At the fundamental level, all that is happening is that the motors are turned by
a gear assembly at a constant rate. Using a stopwatch, I timed the 0 to 360°
rotation for the HAM-III rotator on my workbench, and found that it turned the
full 360° in an average of 49 seconds. Doing some quick math, that comes out
to about 7.347° of rotation per second.

I had been wanting to experiment with the Arduino software timer
interrupts, but had not really found a suitable project for them, until now. By
using a software timer interrupt, I could basically do the old dead-reckoning
time-versus-rotation distance calculation trick, and estimate the rotator position
while the rotator was turning, instead of trying to read the ND values of the

Chapter 24

position potentiometer. After some quick testing to get the feel for how the
Arduino software timer interrupts worked, I incorporated the time and rotational
distance calculations into the interrupt handler function in the sketch and began
my tests. Once I got a few minor bugs ironed out in the sketch, my first run had
the rotator controller tracking the real position within 3° of the actual position
over a 360° rotation. Fine tuning brought that down to less than 1 ° of difference
between the calculated position and the actual position of the rotator. Further
testing determined that a 250 ms interrupt was the optimum interrupt time to
update the front panel LCD display and accurately calculate the rotator position
while it was turning. So, now we had a design that worked and met all the
design criteria.

The Sketch
Now it's time to create the final sketch we're going to use to finish up the

Rotator Controller. The complete sketch and libraries used in this project can be
found in Appendix A or online at www.w5obm.us/ Arduino. Starting out in the
sketch, we'll include all the libraries we'll need. Note that the libraries for the
ADS1115 AID converter and the I 2Cdev library that supports the ADS1115
did not correctly handle the 16-bit data from the AID and had to be modified.
When you create your sketch, be sure to download the modified version of these
libraries from www.w5obm.us/ Arduino.

II Enable De bug Mode - Send De bug out put t o Se rial Monito r

#define debug_mode l

#include <Wire.h> llI2C Library

#inc lude <LiquidCrystal I2C . h> II Liqu id Crys tal I2C Libra r y

#inc lude <EE PROM . h> II Include EEPROM Library

II I nc lude ADS1115 ADC Lib r a r y - Library Up dated to fix errors

#inc lude " ADS 11 15. h "

II Inc l u de I 2Cdev Li brary - Lib r a r y Updated to fix error s

#include "I 2Cdev .h"

#inc lude "Time r. h " II Ti mer Libr a r y so we can d o t i med in t errupt s

Next, we'll define the PC LCD. We'll also define the speed for the Serial
Monitor so that we can use it to help debug the sketch and watch what's going
on while the rotator is turning.

#define l ed e nd 16 II se t width of LCD

#define l ed a ddress Ox27 II I 2C LCD Addre ss

#define l e d lines 2 II Number o f lines on LCD

const int comm_s p eed = 9600 ; II Set the Se ri a l Monito r Baud Rate

Nex t, we'll defin e a ll t h e Arduino I IO p ins that we 'll ne e d to contro l the relays

and t he RGB LE D inside the c ontroller c hassis :

COE/Hy-Gain Rotator Controller 24-13

#define le ft 2 II
#define right 3 II
#define brake 4 II
#define rotate CW 5

#define rotate CCW

#define cal zero 7

#define cal 360 8

6

Assign Left (Counter Clockwise) Relay to Pin 3

Assign Right (Clockwise) Relay to Pin 2

Assign Brake Relay to Pin 4

II Assign CCW switch to Pin 5

II Assign CW switch to Pin 6

#define red 9

#define blue 10

II Ass ign Zero Calibrate switch to Pin 7

II Assign 360 Calibrate Switch to Pin 8

II Assign the Red LED to Pin 9

II Assign the Blue LED to Pin 10

#define green 11 II Assign the Green LED to Pin 11

In order to get the AID converter to read the rotator position potentiometer
accurately, a 4.7 kn pull-up resistor is attached to one side of the potentiometer
that comes in on pin 3 of the rotator connector. We want to feed a low current
into the position potentiometer so we don't cause it to bum out when it's at the
lower resistance positions. Due to the way the current in the pull-up/position
potentiometer circuit will vary as the resistance of the position potentiometer
changes, we'll need a pull-up resistance value of approximately 10 times the
highest resistance of the 500 n potentiometer to prevent any distortion of
the position voltage coming in from the position potentiometer. This results
in a position-sensing voltage that will vary from 0 to approximately 400 m V
depending on the rotator position.

This is another reason why I prefer to use the ADS 1115 AID module instead
of the Arduino 's on board AID converter. The ADS 1115 has six programmable
gain settings. For this project, we'll set the gain for a maximum of 0.512 V
(512 mV).

#define adc_gain Ox04 II Set ADC Gain to 0 to 0.512 volts

Next, we'll define the brake delay. We'll allow three seconds after the
motors have been turned off for the rotator and antenna to coast to a stop before
we engage the brake solenoid to lock the rotator in place.

#define brake delay 3000 II Set the Brake Delay to 3 seconds

Now we'll define the data format we'll use to store the calibration values
in the Arduino's EEPROM and define the default AID values if there is no
calibration data saved:

#define EEPROM ID BYTE 1 II EEPROM ID to validate EEPROM data location

#define EEPROM ID 55 II EEPROM ID Value

#define EEPROM AZ CAL 0 2 II Azimuth Zero Calibration EEPROM location

#define EEPROM AZ CAL MAX 4 II Azimuth Max Calibration Data EEPROM location

#define AZ CAL 0 DEFAULT 0

#define AZ CAL MAX DEFAULT 27000

24-14

The next step is to define all the variables needed in our sketch. You will
note that there are separate rotation speed values for when the rotator is turning

Chapter 24

clockwise (right) or counterclockwise (left). On the HAM-III rotator used in my
testing, there was enough variation in the rotational speeds that I felt the need
for different values for each direction to maintain position accuracy while the
rotator was turning.

int current AZ; II Variable for current Azimuth ADC Value

int AZ Degrees; II Variable for Current Azimuth in Degrees

boolean moving false; II Variable to let us know if the rotor is moving

II Variable to let us know that rotation timing has started

boolean timing = false;

int set AZ ; II Azimuth set value

int AZ O; II Azimuth Zero Value from EEPROM

int AZ MAX; II Azimuth Max Value from EEPROM

int tickEvent ;

II Integer variable for position calculation while moving

int derived_degrees;

float calculated_degrees; II Variable for position calculat ion while moving

II Left rotational speed in degrees per 250ms

float left rotate speed= 1 . 8341;

II Right rotational speed in degrees per 250ms

float right rotate speed 1 . 8369 ;

String direction;

In the last part of the initialization portion of our sketch, we'll initialize the
objects for the LCD, the ADS 1115 and the software timer interrupt.

II set the LCD I2C address to Ox27 for a 16 chars and 2 line display

LiquidCrystal_I2C lcd(lcd_address ,lcd_end,lcd_lines);

Timer t ; II Create Timer object as t

ADS1115 adc; II Define as adc

Starting out in the se tup () loop, we'll start the Serial Monitor port and
the LCD. We'll then display a brief startup message to let us know everything is
good to this point.

Serial . begin(comm_speed); II Start the Serial port

lcd.init(); II initialize the LCD

lcd.backlight(); II Turn on the LCD backlight

COE/Hy-Gain Rotator Controller 24-15

led.home(); II Set the cursor to line 0 , column 0

lcd.print ("Rotor Controller"); II Display startup message

lcd.setCursor(4 , 1);

lcd.print("by KW5GP") ;

Next, we'll set all the Arduino I/O pin modes and make sure that everything
is turned off before we start.

II Define the I nput and Output pins

pinMode(right , OUTPUT) ; //Set the Right Control Relay pin for Output

pinMode(left , OUTPUT) ; //Set the Left Control Relay pin for Output

pinMode(brake , OUTPUT); //Set the Brake Solenoid Relay pin for Output

pinMode(rotate CCW, INPUT); II Set the Rotate CW Switch pin for Input

p i nMode(ro tate CW , INPUT);

p inMode(cal zero, INPUT);

pinMode(cal 360 , INPUT);

II Set the Rotate CCW Switch pin for Input

II Set the Zero Degree Calibrate Switch for Input

II Set the 360 Degree Calibrate Switch for Input

digitalWri te(rotate CCW , HIGH); II Enable the internal pull - up res istors

digitalWrite(rotate CW, HIGH);

digitalWri te(cal_zero, HIGH);

digitalWrite(cal 360, HIGH);

pinMode(red , OUTPUT) ; //Set the RGB LED pins for Output

pinMode(blue , OUTPUT) ;

pinMode(green , OUTPUT);

ledOff() ; //Turn off the RGB LED

Now we'll read the Arduino's EEPROM to load the 0° and 360° calibration
data. If the debug mode is enabled, we'll output the calibration values to the
Serial Monitor.

read eeprom_cal_data(); II Read the EEPROM calibration data

if (debug_mode) II Display the calibration data when in debug mode

Serial.print("Calbration Values - Zero= ");Serial.print(AZ 0) ;

Serial . print(" Max="); Serial.println(AZ_MAX);

Finally, in the last part of the setup () loop, we'll configure and start the
ADS1115:

II Set the ADC sample speed to 128 samples/sec

adc.setRate(ADS1115 RATE 128);

delay(100); //wait for the ADC to process command

adc.setGain(adc gain); //Set the ADC gain

delay(100); II wait for the ADC to process command

II Set the ADC Channel 0 to single ended mode

24-16 Chapter 24

adc.setMultiplexer(ADSlllS_MUX_PO_NG);

delay(lOO); II adc settling delay

Starting out in the main loop () of the sketch, we'll update the software
timer interrupt so it can handle the next interrupt if the rotator is moving:

t.update(); II Update the Interrupt handler

If the rotator is not moving, we'll read the current rotator position and
display it on the LCD:

II Read the ADC normally as long as the motor or brake are not energized

if (!moving)

II Read ADC and display position when we're not moving

II Value is placed in current AZ

read_adc();

II Map the current_AZ to calibrated degrees

AZ Degrees= map(current_AZ, AZ 0, AZ_MAX, 0, 360);

II Send position to Serial Monitor in debug mode

if (debug_mode) {Serial.println(AZ Degrees);}

l cd . setCursor(6,0);

if (AZ Degrees <0)

II Display the current position on the LCD

II Set position to 0 degrees if below 0

AZ Degrees = 0;

if (AZ Degrees > 360) II Set position to 360 degrees if above 360

AZ Degrees = 360;

if (AZ Degrees < 100) II Adjust spacing on LCD

led.print("");

lcd.print(AZ_Degrees);

lcd.print(char(223));

led.print(" ");

II Display the position on the LCD

II Add the degree symbol

If the rotator is turning, we check to see if it had previously been moving
or if this is the start of a move. If this is the start of a move, we'll set up the
software timer interrupts for 250 ms, and allow the interrupt handler to do the
rotational distance calculations while the rotator is turning.

e ls e {
II We're moving, ADC reading is useless - too much noise

if (!timing) II Check to see if we're already timing the event

COE/Hy-Gain Rotator Controller 24-17

II We're just starting to move - start the interrupt timer

tickEvent = t . every(250, Tick); II Set to interrupt every 250ms

if (debug_mode) II Send Interrupt start message in debug mode

Serial.print("250ms second tick started id=");

Serial.println(tickEvent);

timing= true ; II
calculated_degrees

Indicates we're timing the move

AZ Degrees; II Set the starting point for the move

Since the software timer interrupt can happen at any time in the loop and
can take care of itself, we can move on in the loop () and check the rotate
switch to see if it has been released. If the rotator is not turning, we'll read the
rotate switch to see if it has been pressed and determine which direction we
need to tum the rotator.

II Read the rotate switch

II Check to see if the Rotate Switch is activated

if (digitalRead(rotate CCW) == LOW I I digitalRead(rotate_CW) LOW)

II Check for Move Right (CW) Switch

if (digitalRead(rotate_CW) == LOW && !moving)

II Rotate CW

move right(); II Call the Move Right function
}

II Check for Move Left (CCW) Switch

if (digitalRead(rotate CCW) == LOW && !moving)

II Rotate CCW

move left(); II Call the Move Left function

else {

if (moving) II If we were moving, time to stop

moving = false; II Turn off the moving flag

ledRed(); II Turn the LED Red to indicate Braking Cycle

a ll stop(); II Call the Stop Rotation function

24-18

In the last portion of the main loop (),we'll check to see if either of the
CALIBRATION SET pushbuttons have been pressed. If a CALIBRATION SET button has
been pressed, we'll save the AID value for the current position in the Arduino's
EEPROM.

Chapter 24

II Read the Zero Degree Calibrate Switch

if (digitalRead(cal zero) == LOW)

II Cal Zero switch pressed

II Set the current position as the zero calibration point

AZ 0 = current AZ;

write_eeprom_cal data(); II Write the Calibration data to the EEPROM

if (debug_mode) II Display Calibration Data in debug mode

{

Serial.print("Zero Azimuth Calibration Complete - Zero=");

Serial.print (AZ 0); Serial.print(" Max = "); Serial.println (AZ_MAX);

II Read the 360 Degree Calibrate Switch

i f (digitalRead(cal 360) == LOW)

II Cal 360 switch pressed

AZ_MAX = current_AZ - 25; II Adjust top end down a bit to allow for jitter

write_eeprom_cal_data(); II Write the Calibration Data to the EEPROM

if (debug_mode) II Display the Calibration Data when in debug mode

Serial.println("Max Azimuth Calibration Complete - Zero=");

Serial.print (AZ 0); Serial.print(" Max = "); Serial.println (AZ_MAX);

There are 12 functions used in this sketch. By moving the actual control
activities into functions, the sketch can be assembled in a building block
fashion. This allows you to debug your Rotator Controller one piece at a time.
It also gives you a functional building block that you can use in future sketches,
saving you the time of having to rewrite the same block of code over and over
agam.

The a 11 st op () function is used to tum off the motor drive relays, wait
three seconds, then engage the rotator brake. A message indicating we are in the
brake delay cycle will be displayed on the front panel LCD and the RGB LED
will be turned red during the braking cycle.

II Re l ay Off function - stops motion

II De l ays 3 seconds then turns off Brake Relay

void all stop()

lcd . setCursor(0,1); II Display Braking message on LCD

led . print(" Braking

d i gitalWrite(right, LOW);

digita l Write(left, LOW);

") ;

II Turn off CW Relay

II Turn off CCW Relay

timing = false; II turn off the timing flag

COE/Hy-Gain Rotator Controller 24-19

direction = "S"; II Set direction to S (Stop)

t.stop(tickEvent);

delay(brake_delay);

digitalWrite(brake,

lcd.setCursor(0,1);

II Turn off the Timer interrupts

II Wait for rotor to stop

LOW); II Engage the Rotor Brake

II Clear the Braking Message

led.print(" ");

ledOff(); II Turn off the LED

The move_ left () and move_ right () functions activate the brake
solenoid and the motor drive relays to tum the rotator. The moving flag is
turned on and an arrow indicating the direction of rotation will be displayed on
the LCD. If we're turning left, the RGB LED will glow green; if we're turning
right it will glow blue.

void move left() II Turn the rotor Left (CCW)

ledGreen(); II Turn on the Green LED

moving = true; II set the moving flag

direction = "L"; II set the direction flag to "L" (Left)

lcd.setCursor(0,1); II display the left arrow on the LCD

lcd.print(char(127));

digitalWrite(brake, HIGH);

digitalWrite(left, HIGH);

II Release the Brake

II Energize the Left Drive Relay

void move right() II Turn the rotor Right (CW)

ledBlue(); II Turn on the Blue LED

moving = true; II set the moving flag

direction = "R"; II set the direction flag to "R" (Right)

II display the right arrow on the LCD lcd.setCursor(15,1);

lcd.print(char(126));

digitalWrite(brake, HIGH);

digitalWrite(right, HIGH);

II Release the Brake

II Energize the Right Drive Relay

The next block of functions controls the RGB LED. Since there are
three digital VO pins controlling the RGB LED, it makes sense to move the
LED controls into functions, rather than have to repeat the sequence of three
digi talWri tes () inside the sketch to set the appropriate LED color or tum
the LED off.

II LED Off function

void ledOff ()

24-20 Chapter 24

digitalWrite(red , LOW) ; // Set all RBG LED pins High (Off)

digita l Write(green , LOW);

digita l Write (b lue , LOW) ;

//RED LED ON function

void l edRed ()

digi ta l Write (red , HIGH); // Turn on the RGB Red LED On

dig i ta l Write (green , LOW);

digitalWrite(bl ue , LOW) ;

I I Green LED ON function

void ledGreen ()

digitalWrite(red , LOW) ;

digi talWrite(green , HIGH) ; II Turn on the RGB Green LED On

dig i talWrite (blue , LOW) ;

//Blue LED ON function

vo i d l edBlue ()

dig i ta l Write (red , LOW) ;

digi ta l Write (green , LOW) ;

digitalWr i te(blue , HIGH) ; // Turn on the RGB Blue LE D On

I I Wh i te LED function

vo i d l edWhite() //Turn on all LEDs to get white

d i g italWrite(red , HIGH);

digitalWrite(green , HIGH) ;

dig i ta l Wr i te (b l ue, HIGH) ;

Next, we have the read_ a dc () function to read the 16-bit AID converter.
If debug mode is enabled, the value of the current rotator position is sent to the
Serial Monitor.

II Read the A/ D Converter

void read_adc ()

II d i splay ADC read status in debug mode

i f (debug_mode) {Serial.print(" Read ADC Funct i on ");}

II Set the ADC sample rate to 128 samples/second

COE/Hy-Gain Rotator Controller 24-21

adc.setRate(ADS1115 RATE 128);

delay(lO); II Wait for ADC to settle

adc.setGain(adc_gain); II Set the ADC gain

delay(lO); II Wait for ADC to settle

adc.setMultiplexer(ADS1115_MUX_PO NG); II Set the ADC to single-ended mode

delay(lOO); II Wait for ADC to settle and start sampling

current AZ adc.getDiffO(); II Read ADC channel 0

II Display ADC value in debug mode

if (debug_mode) {Serial.println(current_AZ);}

The read_ eeprom _cal_ data () function is used to read the saved
position calibration data from the Arduino's EEPROM into the sketch variables.
If debug mode is enabled, the calibration values will be sent to the Serial
Monitor.

void read eeprom_cal data() II Read t he EEPROM Calibration data

II Verify the EEPROM has valid data

if (EEPROM.read(EEPROM_I D_BYTE) == EEPROM_ID)

if (debug_mode) II Display the Calibration data in debug mode
{

Serial . println("Read EEPROM Calibration Data Valid ID");

Serial.println((EEPROM.read(EEPROM_AZ CAL 0) * 256) + EEPROM.read(EEPROM

AZ CAL_O + l),DEC);

Serial.println((EEPROM.read(EEPROM_AZ CAL_MAX) * 256) + EEPROM.

read(EEPROM_AZ CAL_MAX + 1),DEC);

}

II Set the Zero degree Calibration Point

AZ_O=(EEPROM.read(EEPROM_ AZ_CAL 0)*256)+EEPROM.read(EEPROM_AZ CAL 0 + 1);

II Set the 360 degree Calibration Point

AZ MAX (EEPROM.read(EEPROM_ AZ CAL_MAX)*256) + EEPROM.read(EEPROM_AZ CAL
MAX+ l);

else {

II EEPROM has no Calibration data - initialize eeprom to default values

if (debug_mode)
{

II Send status message in debug mode

Serial . println("Read EEPROM Calibration Data Invalid ID - setting to
defaults");

AZ 0 AZ CAL 0 DEFAULT; II Set the Calibration data to default values

24-22 Chapter 24

AZ_ MAX = AZ CAL_MAX DEFAULT;

write eeprom_cal data(); II Write the data to the EEPROM

The write_ eeprom _ ca l_ data () function is used to write the current
position calibration data to the Arduino's EEPROM and updates the sketch
variables with the new calibration data.

II Write the Cal ibration data to the EEPROM

void write eeprom_cal data()

if (debug_mode)

II Display status in debug mode

Serial.println ("Writing EEPROM Calibration Data");

II Write the EEPROM ID to the EEPROM

EEPROM.write(EE PROM_ID_BYTE , EEPROM_ID) ;

II Write Zero Calibration Data High Order Byte

EEPROM.write(EEPROM_AZ_CAL_O , highByte(AZ 0));

II Write Zero Calibration Data Low Order Byte

EEPROM.write(EEPROM_AZ CAL 0 + l ,lowByte(AZ 0)) ;

II Write 360 Calibration Data High Order Byte

EEPROM.write(EEPROM_AZ CAL_MAX , highByte(AZ_MAX));

II Write 360 Calibration Data Low Order Byte

EEPROM.write(EEPROM_AZ CAL_MAX + l,lowByte(AZ_MAX));

Our last function is the interrupt handler function that is called when a
software timer interrupt occurs. Whenever a timer interrupt occurs, the Arduino
pauses execution of the main loop () and executes this function. When the
function is completed, the Arduino resumes the main loop () right where it
left off before it received the interrupt.

II Timer Interrupt Handler

void Tick()

if (debug_mode) II Display Interrupt information in debug mode

Serial.print(" 250ms second tick : millis()=");

Serial .print(millis()) ;

Serial.print(" ");

II If Interrupts are enabled , it means that we 're in the process of

II timing the rotation - Add the est imated distance traveled

II to the current calculated positon

COE/Hy-Gain Rotator Controller 24-23

if (direction== "R") II If we're moving Clockwise

II Increase when we move right

calculated_degrees = calculated_degrees + right rotate speed;

else {

II Decrease when we move left

calculated_degrees = calculated_degrees - left_rotate_speed;

if (debug_mode) II Display Calculated Rotation information in debug mode

Serial.print(" ");

Serial.print("Rotating ");

Serial.print(direction);

Serial.print(" ");

Serial.println(calculated_degrees);

lcd.setCursor(6,0); II Update the LCD with the estimated position

derived_degrees = (int)calculated_degrees;

if (derived_degrees < 0) II Set to Zero if we calculate below zero

derived_degrees = 0;

if (derived_degrees > 360) II Set to 360 if we calculate above 360

derived_degrees = 360;

if (derived_degrees < 100)

led.print(" ");

lcd.print(derived_degrees); II Display the position on the LCD

lcd.print(char(223)); II Add the degree symbol

led.print(" ");

24-24

Since every rotator controller turns at a slightly different speed, you'll need
to tune the left and right rotate speed variables to get your rotator controller to
accurately display the current position while moving. You will need to do this
with the debug mode disabled, as the slight delay introduced by sending data to
the Serial Monitor can affect the timing for the position calculations.

To tune the right rotation speed variable, I turned the rotator from 0° to
approximately 340° and compared the final estimated value to the actual
position displayed when the brake cycle completed. I used 340° in case we were
estimating too high, and our sketch modifies any values higher than 360 to be
360°. I then repeated the process from 360° to 20° to adjust the left rotation
speed variable. Be sure to let the rotator cool after a few full rotations. It's not
made for constant duty and may overheat if you tum it too much while you're
tuning the rotation speed variables.

Chapter 24

Enhancement Ideas
The 0° /360° position on our rotator controller starts at the far left

(counterclockwise) rotation point. The standard CDE/Hy-Gain Rotator
Controller has the 0° /360° position at mid-scale on the meter. If you prefer the
0/360° point to be at the midpoint of the rotation, you can modify the sketch
to mirror the values of the standard controller by using the same method we
used in the Azimuth/Elevation Rotator Controller project to modify the position
values.

The sketch for this project does not include the Yaesu GS-232A azimuth
only rotator emulation code to allow your PC to automatically control the
rotator. You can add that functionality if you want to use Ham Radio Deluxe
or other antenna positioning software on your PC to automatically control the
rotator. The Reset Disable jumper needed to interface with Ham Radio Deluxe
has been included in the design for this project, in case you want to add that
code in. To upload your sketch, the Reset Disable jumper must be removed,
otherwise the Arduino IDE can't automatically reset the Arduino using the
DTR signal to enter the sketch upload mode. Since Ham Radio Deluxe toggles
the DTR signal line when it initially attempts to connect to the rotator, it
inadvertently resets the Arduino and the rotator controller will never connect
to Ham Radio Deluxe. If you are adding the interface for Ham Radio Deluxe,
remember to add the Reset Disable jumper after uploading your sketch.

References
Rotor Parts by C.A.T.S - www.rotor-parts.com
TEN-TEC - www.tentec.com

COE/Hy-Gain Rotator Controller 24-25

· · CHAPTER 25

Modified COE/Hy-Gain
Rotator Controller

-OFF ON

COE/Hy-Gain Rotator Controller.

The CDE/Hy-Gain HAM series is probably the most popular antenna
rotator ever made. However, computer control for the CDE/Hy-Gain rotators
didn't come about until the HAM-V series in 1994. This doesn't help those of
us who have the older versions. By now you may have guessed that I have a
thing for the Arduino and rotator controllers, so it would be a natural to modify
an existing CDE/Hy-Gain controller and give it Arduino-powered computer
control by Ham Radio Deluxe (HRD) and other rotator control programs.

In researching this project, I found only one similar Arduino project for
the CDE/Hy-Gain controllers, but that project required modifications inside
the rotator bell housing assembly. This is due to the basic design of the rotator
assembly as discussed in the previous rotator controller project in Chap-
ter 24. Because the positioning sensor inside the rotator bell housing shares
its de ground with the rotator brake solenoid and drive motor ac ground, there
is about a half a volt of ac hum on the positioning signal that I have been unable
to filter out. That is why we ended up doing the time versus rotational distance
calculations to estimate the rotator position in the previous project.

For this project, I took a slightly different approach. After playing with my
CDE/Hy-Gain controller, measuring voltages and looking at signals all through
the rotator positioning circuit, I found that the analog position meter filtered

Modified COE/Hy-Gain Rotator Controller 25-1

out a large percentage of the ac hum. In fact, when measuring the positioning
voltage across the analog meter, the signal was nearly usable. With the addition
of a filtering capacitor across the analog meter, the ac hum on the positioning
signal was almost totally gone and the analog-to-digital (AID) converter was
able to reliably read the rotator position signal, even with the rotator turning.
Adding the capacitor across the meter did not affect the analog meter readings
at all, and may actually have made it more accurate as well.

With every bit of good news, there comes a little bad. While the position
sensing signal was now usable from a stability standpoint, because we're
measuring across the meter assembly, the voltage is at a very low level - in
the range of 0 to 55 mV. Once again, the Texas Instruments ADS1115 AID
converter rides to the rescue. The ADS 1115 has the ability to read two channels
of signals differentially or four channels in single-ended mode. By using
the differential mode, we can have the ADS 1115 read the positioning signal
across the analog meter in the rotator control box. The ADS 1115 also has six
programmable gain settings. As luck would have it, the lowest gain setting
on the ADS 1115 is a full scale reading of 256 m V. This means that at the
maximum rotator position indication of 55 m V, the AID converter would read
about Vs of its full scale reading, or approximately 7040 AID counts. This yields
an overall resolution of about 19.5 counts per degree, which should be sufficient
for positioning the rotator accurately.

Since we want this project to be able to interface with the rotator controller
in Ham Radio Deluxe, we'll have the Arduino emulate the Yaesu GS-232A
in azimuth-only mode. Since we already created a sketch that emulates the
Yaesu GS-232A when we did the Azimuth/Elevation Rotator Controller in an
earlier chapter, we'll be able to re-use the majority of that sketch here, reducing
the sketch development process drastically. In fact, so much of that sketch's
code was able to be re-used that the initial test sketch for this project was up
and running in just a few minutes. This is yet another reason the Arduino has
become so popular. Because the sketch for the Azimuth/Elevation Rotator
Controller project was created using groups of function calls, with just a few
minor changes, those same functions could be adapted for an azimuth-only
controller such as the CDE/Hy-Gain unit.

Modifying the Stock Control Box
Figure 25.1 shows the block diagram for the Modified CDE/Hy-Gain

Rotator Controller project. The actual modification to the rotator control box
is minimal, consisting of a small board to hold the three control relays and an
Arduino Uno with a protoshield to interface to the relays and position sensor.
We'll use the Arduino's USB port to interface with the PC running Ham Radio
Deluxe.

Starting out, we have to find a place inside the CDE/Hy-Gain rotator
controller box to mount the Arduino Uno. The only place with enough
room is on the underside of the controller box, between the 26 V ac power
transformer and the motor capacitor (Figure 25.2). We'll cut out a small hole
in the back cover to allow access to the Arduino's USB port for programming
and interfacing to the PC. The downside to mounting the Arduino in the only

25-2 Chapter 25

Rotator

Rotator Drive

CDE
Rotator

Control Box

Position
Sense

Rotator
Control

Arduino Uno

USB
Port

ARRL 1163

PC
Running

HRD

Figure 25.1 - Modified COE/Hy-Gain Rotator Controller block diagram.

Figure 25.2 - The underside of the COE/Hy-Gain rotator
controller. The Arduino will be mounted in the open
space between the power transformer and the motor
capacitor.

•
Figure 25.3 - Rear view of
the modified COE/Hy-Gain
rotator controller showing
the cutout for the Arduino
Uno's USB port.

Modified COE/Hy-Gain Rotator Controller 25-3

25-4 Chapter 25

Figure 25.4 - The Arduino Uno mounted in the COE/Hy-Gain rotator
controller.

Figure 25.5 - The brake and motor relays mounted in the chassis.

ARRL 1164

available space is that the cutout for the USB port is also where the control box
chassis has a double layer of metal, which makes the hole cutting just a slightly
more difficult (Figure 25.3). Fortunately it's only a small hole we need to cut
out, so it goes fairly quickly. Figure 25.4 shows the Arduino Uno mounted to
the underside of the control box chassis.

Next, we'll use epoxy to glue the three miniature relays to a strip of perfboard
and mount it to the ends of two existing screws in the control box chassis (Figure
25.5). You can mount the relay board anywhere you want on the underside of the
chassis, but the two existing screws were just too convenient to ignore.

Now it's time to wire everything together. Because we need to wire in the
switches and position sensing circuit inside the rotator control box, we won't
build a test circuit on the breadboard. Instead, we'll wire everything in place in
the rotator control box and hope for the best. Be sure and unplug your control
box, as there is 120 V ac all over the inside. Figure 25.6 shows the Fritzing
diagram for modifying your CDE/Hy-Gain rotator controller. As with the Yaesu
Azimuth/Elevation Rotator Controller, only a couple of components are needed
to build this project. We'll mount the resistors and transistors used to drive the
relays, along with the ADS 1115 AID converter, and the Reset Disable jumper
on an Arduino protoshield. We'll then use the DuPont-style header and socket

03
2N2222A

CCW (Left) Drive

02

to---- I 2N2222A

CW (Right) Drive

01
____ I, --0~2223~

Modified COE Rotator Controller

D3
1N4001 I

Brake Drive

K3

------To Brake Switch

CCW (Left) Drive

K2

t------ To Left (CCW) Switch

D1 ,d. CW (Right) Drive

1N4001 I K1

to------ To Right (CW) Switch

To Front Panel
Meter j 47~~-F --

~~~~~~~ J2 

Figure 25.6 - Modified COE/Hy-Gain Rotator Controller Fritzing diagram. 

Modified COE/Hy-Gain Rotator Controller 25-5 



R3 

4700 

R1 

470 Q 

~ ~ ~ 0 ~ N ~ 0 rn ro ~ ~ ~ ~ M N 0 0 
~ @ ~ ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 

I I <{ 

I I 
I I 
I I 
I I 

U1 
Arduino Uno R3 

'- I -=--=--=--=--=--=--=--=--=--=--=--= I 

DTR 1 
Reset 2 

Disable 

J1 

0 
UJ 
> a:: lL f
UJ UJ UJ (/)a::(/) 
~ Q ~ 

N ~ 

0 0 
> > z z ~ 
("')l()C)C)> 

0 ~ 
<{ <{ 

I I 
<{ ...J 
0 () 
!!2 !!2 

"' ("') '<t l() <t: <{ <{ <{ 

R2 

470 Q 

Q3 

Q1 

R4 
4.7 k 

Brake Relay 
Drive 

CCW(Left) 
Relay Drive 

CW (Right) 
Relay Drive 

+5V 

Figure 25.7 - Modified COE/Hy-Gain Rotator Controller schematic diagram. 

+5V 

U2 

D3& I I K3 Brake 

---r-0--------- To Left (CCW) 
4 : l Switch 

t 

D2 A I I K2 Left (CCW) 

---r-0--------- To Right (CW) 
4 I / Switch 

D1 

D1-D3 
1N4001 

I 

K1 Right (CW) 

"B 

470 µF 

J2 

To Front 
Panel Meter 

ARRL1165 

C1 -1µF,16V 
capacitor. 

C2-470µF,16V 
capacitor. 

01 -03 - 1 N4001 
diode. 

FB - Ferrite bead 
choke. 

J1 - 2 pin header 
jumper. 

J2 - 2 pin header. 
K1-K3-5 V SPST 

relay. 
Q1-Q3 - 2N2222A 

transistor. 
R1-R3-470 Q 

resistor. 
R4, RS-4.7 kQ 

resistor. 
U1 - Arduino Uno. 
U2 -ADS111516-

bit AID converter 
module. 

Lt) 
C\I ... 
Cl) 

Q. 
cu 
.c 
CJ 

co 
I 

Lt) 
C\I 



connectors to connect up the relays and rotator position sensing. Figure 25.7 
shows the schematic diagram for this project. 

Finding a way to read the rotator position accurately with the AJD converter 
proved to be difficult. Reading the position sensor directly through a voltage 
divider to reduce the 12 V position sense voltage to 5 V brought the same noise 
issues that we had with the previous CDE/Hy-Gain rotator controller project. 
Searching through the rotator control box with a voltmeter and oscilloscope 
showed that the voltage across the front panel meter did not have as much ac 
noise, and we could have the AJD read the voltage across the analog meter 
differentially. By adding a 470 µF filtering capacitor across the meter, the 
ac hum was all but filtered out, and we had a usable position sense voltage. 
Since we're reading across the meter, the position sense voltage is very low 
(0 to 55 mV), so we'll need to set the ADSl 115 gain to its most sensitive 
setting of 256 m V for a full scale reading. When you attach the wire coming 
from the analog meter, the meter lug closest to the center of the chassis is the 
higher potential (positive) side, which should be connected to AJD channel 0. 
The lower potential side (negative) is connected to AJD channel 1. This will 
allow the ADS 1115 to read channel 0 and 1 differentially. Since we're reading 
differentially, the ac hum is no longer such a factor, and the input capacitor 
filters out whatever ac hum is remaining. A ferrite bead choke was also added to 
the position sense input to the AJD for added noise protection. 

The relays are wired across the contacts on the motor and brake switches 
on the front panel. Be careful with the brake switch wiring. The brake switch 
actually controls the 120 V ac power to the 26 V ac power transformer, and 
the brake is released by applying power to the motor drive circuit. Figure 25.8 
shows the completed modifications to the CDE/Hy-Gain rotator control box. 

Figure 25.8 - The finished controller modifications with all the wiring 
complete and the protoshield mounted on top of the Arduino Uno. 

Modified COE/Hy-Gain Rotator Controller 25-7 



The Sketch 
Now that the modifications to the CDE/Hy-Gain rotator control box are 

complete, we can start creating our sketch. You will see that the flowchart 
(Figure 25.9) for this project is very similar to the flowchart we used for the 
Yaesu Azimuth/Elevation Rotator Controller project. We'll use the EEPROM on 
the Arduino to save our azimuth calibration data. To allow interfacing with Ham 
Radio Deluxe for rotator control, we'll have the Arduino emulate the Yaesu 

25-8 Chapter 25 

Start 

Include Libraries 
Define Pins and Variables 

Define ADC 

Setup Digital 1/0 Pins 
Initialize 12C Bus 

Initialize ADC 
Read EEPROM Calibration Data 

Initialize Serial Port 

Loop 

Read Serial Port 
Decode Command 

Return Requested 
:>-.----~ Position Information i-+--~ 

No 

Perform Rotate Function 

Via Serial Port 

Perform Requested 
Yes Calibration 

Save Calibration Data 
to EEPROM 

ARRL1166 

Figure 25.9 - Modified COE/Hy-Gain Rotator Controller flowchart. 



GS-232A in azimuth-only mode. This will allow us to use most of the same 
sketch we used for the Yaesu Azimuth/Elevation Rotator Controller project. 
All we have to do is make a few minor changes and remove the portions of the 
sketch that deal with elevation control. The Yaesu GS-232A command codes 
needed to communicate with Ham Radio Deluxe are listed in Table 25.1. Since 
the Yaesu GS-232A command set includes the commands needed to calibrate 
the zero and maximum azimuth values, we won't need the calibration switches 
we used in our previous CDE/Hy-Gain rotator controller project. 

The complete sketch for the Modified CDE/Hy-Gain Rotator Controller 
can be found in Appendix A and online at www.w5obm.us/ Arduino. Starting 
out with the sketch, we'll include the libraries we need, enable the debug mode 
for troubleshooting, and initialize the ADS 1115 AID converter object. The 
ADS1115. hand I2Cdev. h libraries have been customized to correct an 
error when handling 16 bit data. Be sure to use the modified libraries in your 
sketch. When your sketch is tested and debugged, don't forget to add the Reset 
Disable jumper on the protoshield and tum debug mode off, otherwise the Ham 
Radio Deluxe rotator controller software will not connect to the Arduino. 

II Debug Mode must be off to communicate with Ham Radio Deluxe 

#define debug_mode 1 II Set to 1 for debug data on Serial Port 

#include <Wire .h> II Include the I2C Communication Library 

#include <EEPROM.h> II Include the EEPROM Library 

II Include the ADS1115.h Library (Library Updated to fix errors) 

#include "ADS1115.h" 

II Include I2CDev .h Library (Library Updated to fix errors) 

#include "I2Cdev.h" 

ADS1115 adc; II Define the ADS1115 as adc 

The next thing we need to do is define the relay pins, the default positioning 
calibration data, and the speed on the serial port. You need to be sure whatever 
speed you choose to define matches the settings you plan to use in Ham Radio 
Deluxe. We'll also define the format for the calibration data that will be kept in 
the Arduino's onboard EEPROM. 

Table 25.1 
COE/Hy-Gain Rotator Controller Commands 
(Subset of Yaesu GS-232A Commands) 
A Stop Azimuth Rotation 
C Return Current Azimuth Value in Degrees (format +Oaaa) 
F Set Azimuth Full Scale Calibration 
L Rotate Azimuth Counter-Clockwise 
Maaa Rotate Azimuth to aaa degrees 
0 Set Azimuth Zero Calibration 
R Rotate Azimuth Clockwise 
S Stop All Rotation 

Modified COE/Hy-Gain Rotator Controller 25-9 



#define rotate left 4 II Define Rotate Left as Pin 4 

#define rotate right 5 II Define Rotate Right as Pin 5 

#define brake 6 II Define the Brake pin 

II Preset the Azimuth Zero Calibration Point to 0 if no EEPROM data 

#define AZ CAL 0 DEFAULT 0 

II Preset the Azimuth Max Calibration Point to 7000 if no EEPROM data 

#define AZ CAL MAX DEFAULT 7000 

#define AZ Tolerance 2 II Set the Azimuth Accuracy Tolerance in degrees 

#define BAUD RATE 9600 II Set the Serial Port Baud rate to 9600 

#define EEPROM ID BYTE 1 II EEPROM ID to validate EEPROM data location 

#define EEPROM ID 55 II EEPROM ID Value 

#define EEPROM AZ CAL 0 2 II Azimuth Zero Calibration EEPROM location 

#define EEPROM AZ CAL MAX 4 II Azimuth Max Calibration Data EEPROM location 

As the last step in the initialization portion of our sketch, we'll define all of 
the variables we'll be using in this sketch: 

byte inByte = O; II incoming serial byte 

byte serial_buffer[50); II incoming serial byte buffer 

II The index pointer variable for the Serial buffer 

int serial buffer index = 0; 

int set AZ; II Azimuth set value 

int current AZ; II Current Azimuth raw value 

String Serial Send_Data; II Data to send to Serial Port 

int AZ O; II Azimuth Zero Value from EEPROM 

int AZ MAX; II Azimuth Max Value from EEPROM 

int AZ Degrees; II mapped AZ ADC value to Degrees 

String Requested_AZ; II RS232 Requested Azimuth - M command 

int AZ_To; II Requested AZ Move 

int AZ Distance; II Distance to move AZ 

In the setup () loop, we'll start out by setting the digital 1/0 pin modes 
for the brake solenoid and motor drive relays. Then we'll tum off the relays to 
make sure everything is turned off before we begin. 

II Define the Control Pins as Outputs 

pinMode(rotate left, OUTPUT); II define the rotate left relay pin 

pinMode(rotate_right, OUTPUT); II define the rotate right relay pin 

pinMode(brake, OUTPUT); II define the brake solenoid relay pin 

25-10 Chapter 25 



II Turn off all the relays just to be sure 

digitalWrite(rotate left, LOW); II Turn off the rotate l e ft relay 

digitalWrite(rotate right, LOW); //Turn off the rotate right relay 

digitalWrite(brake , LOW) ; II Turn off the brake solenoid relay 

Next, we'll start the serial port, the PC bus, and the ADS1115. We'll then 
configure the AID to run continuously at 32 samples per second. We'll also set 
the AID gain to 256 m V and have the AID read differentially between input 
channels 0 and 1. 

Serial . begin(BAUD RATE); //initialize serial communication 

Wire.begin(); //join I2C bus 

adc . initialize(); //initialize ADS1115 16 bit A/D chip 

Wire.beginTransmission(Ox48); II Begin direct ADC communication 

II Connect to adc and send two bytes - Set Config Reg to all Ones 

Wire.write(Oxl); 

Wire . write(Ox7F); II MSB 

Wire.write(OxFF); // 

Wire.endTransmission(); 

LSB 

II End the direct ADC Communication 

II Set the ADC to free running conversion mode 

adc . setMode(ADSlllS_MODE CONTINUOUS); 

II set the ADC gain to 0.256 Volt range, 0 .007 813 Volts/step 

adc.setGain(ADSlllS PGA_OP256); 

II set ADC sample rate to 32 samples per second 

adc.setRate(ADSlllS_RATE 32); 

// Set the ADC to ANO+ ANl Differential Mode 

adc . setMultiplexer(ADSlllS_MUX PO_Nl); 

In the last portion of the setup () loop, we'll tum off the flag we use to 
indicate rotator movement and read the rotator position calibration data from 
the Arduino's EEPROM. If there are no calibration values saved, the sketch will 
use the defined default calibration values. 

set AZ= -1; // Preset the Azimuth Move Variables 

II Read the Azimuth Calibration Values from EEPROM 

read_eeprom_cal data(); 

As with the Yaesu Azimuth/Elevation Rotator Controller project, there are 
only two statements in the main loop () . The major portion of the work is 
done by function calls. The check_ serial ( ) function checks the serial port 

Modified COE/Hy-Gain Rotator Controller 25-11 



for incoming commands from Ham Radio Deluxe and executes any commands 
it receives. The check move () function takes care of the actual rotator 
movement. 

check serial(); II Check the Serial Port for Data 

check_move(); II Check to see if executing move command 

The functions in this sketch handle most of the work. The first function, 
read_ eeprom _cal_ data (),reads the calibration data stored in the 
Arduino's onboard EEPROM and places it into the variables we use to map the 
raw rotator position data into the actual azimuth in degrees. If there is no valid 
calibration data, the default values are used and also saved in the Arduino's 
EEPROM. 

void read_eeprom_cal_data() II Function to Read the Azimuth Calibration Data 

II Verify the EEPROM has valid data 

if (EEPROM.read(EEPROM_ID_BYTE) == EEPROM ID) 

{ 

if (debug_mode) II If in Debug Mode Print the Calibrat i on Values 

{ 

Serial.println("Read EEPROM Calibration Data Valid ID"); 

Serial .println((EEPROM.read(EEPROM_AZ_CAL_O) * 256) + EEPROM.read(EEPROM_ 

AZ_ CAL_O + 1),DEC); 

Serial.println((EEPROM.read(EEPROM_AZ_CAL_MAX ) * 256) + EEPROM. 

read(EEPROM_AZ_CAL_MAX + 1),DEC); 

II Read the Azimuth Zero Calibration Value from EEPROM 

AZ 0 = (EEPROM.read(EEPROM_AZ CAL 0)*256) + EEPROM.read(EEPROM_AZ CAL 0 + 
1) i 

II Read the Azimuth Maximum Calibration Value from EEPROM 

AZ MAX (EEPROM.read(EEPROM_AZ_CAL_MAX)*256) + EEPROM.read(EEPROM_AZ CAL 

MAX+ 1); 

else { II initialize eeprom to default values 

if (debug_mode) 

{ 

Serial . println("Read EEPROM Calibration Data Invalid ID - setting to 

defaults"); 

AZ 0 = AZ_CAL_O_DEFAULT; II Set the Ca libration To Default Va lues 

AZ MAX = AZ_CAL_MAX_DEFAULT; 

write eeprom_cal_data(); II Write the Default Values to EEPROM 

25-12 Chapter 25 



The write_ eeprom _cal_ data function is used to write the calibration 
data to the Arduino's onboard EEPROM: 

II Function to Write the Calibration Values to EEPROM 

void write eeprom_cal data() 

Serial.println("Writing EEPROM Calibration Data"); 

EEPROM.write(EEPROM_ID_BYTE,EEPROM_ID); II Write the EEPROM ID 

II Write the Azimuth Zero Calibration High Order Byte 

EEPROM.write(EEPROM_AZ CAL O,highByte(AZ 0)); 

II Write the Azimuth Zero Calibration Low Order Byte 

EEPROM.write(EEPROM_ AZ_ CAL 0 + 1,lowByt e(AZ 0)); 

II Write the Azimuth Max Calibration High Order Byte 

EEPROM.write(EEPROM_ AZ_ CAL_MAX,highByte(AZ_MAX)); 

II Write the Azimuth Max Calibration Low Order Byte 

EEPROM.write(EEPROM_AZ CAL_MAX + 1,lowByte(AZ_MAX)); 

The check_ serial () function will read the incoming characters from 
the PC, then decode and execute the Yaesu GS-232A command. If you are not 
using Ham Radio Deluxe to control your rotator, you may need to uncomment 
the statement that echoes the received data back to the PC. Ham Radio Deluxe 
will not connect to the rotator controller if debug mode is on or if the received 
characters are echoed back to the PC. 

void check serial() II Function t o check for data on the Seria l port 

if (Serial.available() > 0) II Get the Serial Data if avai lable 

inByte = Serial.read(); II Get the Serial Data 

II You may need to uncomment the following line if your PC software 

II will not communicate properly with the controller 

II Serial.print(char(inByte)); II Echo back to the PC 

if (inByte == 10) II ignore Line Feeds 

return; 

if (inByte !=13) II Add to buffer if not CR 

serial_buffer[serial_buffer index] = inByte; 

if (debug_mode) II Print t he Character received if in Debug mode 

{ 

Serial.print("Receiv ed = "); 

Serial.println(serial_buffer[serial_buffer_index]); 

Modified COE/Hy-Gain Rotator Controller 25-13 



serial buffer index++; // Increment the Serial Buffer pointer 

} else II It's a Carriage Return, execute command 

//If first character of command is lowercase, convert to uppercase 

if ((serial_buffer[O] > 96) && (serial_buffer[O] < 123)) 

{ 

serial_buffer[OJ serial_buffer[O] - 32; 

Once the command has been received, we'll use a swi tch ... case () 
statement to decode and execute the command: 

switch (serial_buffer[OJ) II Decode first character of command 

25-14 

case 65: //A Command - Stop the Azimuth Rotation 

if (debug_ mode) {Serial. println ("A Command Received") ; } 

az rotate stop(); //call the rotate stop function 

break; 

case 67: II C - return current azimuth 

if (debug_mode) II Return the Buffer Index Pointer in Debug Mode 

Serial.println("C Command Received"); 

Serial.println(serial_buffer_index); 

send_current az(); II Return Azimuth in degrees 

break; 

case 70: // F - Set the Max Calibration 

if (debug_mode) 

Serial . println("F Command Received"); 

Serial.println(serial_buffer index); 

set_max_az cal(); // F - Set the Max Azimuth Calibration 
break; 

case 76: // L - Rotate Azimuth CCW 

if (debug_mode) 

Serial.println ("L Command Received"); 

rotate az ccw(); II Call the Rotate Azimuth Left (CCW) Function 
break; 

Chapter 25 



case 77 : II M - Rotate to Set Point 

if (debug_mode) 

Serial.println ("M Command Received"); 

rotate to() ; II Call the Rotate to Set Point Command 

break ; 

case 79: II 0 - Set Zero Calibration 

if (debug_mode) 

Serial. println (" O Command Received"); 

Ser i al.println(serial_buffer index) ; 

set 0 az cal(); II 0 - Set the Az imuth Zero Calibration 

break ; 

case 82: II R - Rotate Azimuth CW 

if (debug_mode) 

Serial.println(" R Command Rece ived"); 

rotate az cw() ; II Call the Ro t ate Azimuth Right (CW) Function 

break ; 

case 83 : II S - Stop All Rotation 

if (debug_mode) 

Ser i al.println ("S Command Received"); 

az_rotate stop() ; II Call the Stop Azimi th Rotation Function 

break ; 

After the decoded command has been executed, the serial data buff er is 
cleared and the sketch is ready to receive the next command: 

II Clear the Serial Buffer and Reset the Bu ffer Index Pointer 

serial buffer index = O; 

ser ia l_buffer[O] O; 

The send current az () function will read the AID converter and 
convert the raw AID value to a calibrated azimuth value. The azimuth data is 

Modified COE/Hy-Gain Rotator Controller 25-15 



adjusted to allow for the 0° /360° position being at midscale instead of at the 
minimum and maximum values. The azimuth value in degrees is then sent to 
the PC via the USB port. 

void send current_az() II Send the Current Az imuth Function 

read_adc(); II Read the ADC 

II Map Azimuth to degrees 

if (debug_mode) 

Serial.println(current AZ); 

II Map the Current Azimuth to Degrees 

AZ Degrees= map(current_AZ, AZ 0, AZ_MAX , 0, 360); 

II Correction Since Azimuth Reading starts at Meter Center Point 

if (AZ Degrees > 180) 

AZ_Degrees 

else { 

AZ Degrees 

AZ Degrees - 180; 

AZ Degrees + 180 ; 

if (debug_mode) 

Serial.println(AZ Degrees); 

II Send it back v i a serial 

Serial_Send_Data = ";'; 

if (AZ Degrees < 100) II pad with O's if needed 

Serial Send Data = "O"; 

if (AZ Degrees < 10) 

{ 

Serial Send Data = "00"; 

II Send the Azimuth in Degrees 

Serial Send Data= "+0" +Serial Send Data+ String(AZ Degrees); 

Serial.println(Serial Send_Data); II Return value via USB port 

25-16 

The set _max _ a z _ca 1 ( ) function is used to set the calibration value 
for the maximum azimuth rotation. This value is then saved to the AZ MAX 

calibration variable, and to the Arduino's onboard EEPROM. 

Chapter 25 



void set_max_az cal() II Set the Max Azimuth Calibration Function 

Serial.println("Calibrate Max AZ Function"); 

read_adc(); II Read the ADC 

II save current az and el va lues to EEPROM - Zero Calibration 

Serial .println(current_AZ); 

II Set the Azimuth Maximum Calibration to Current Azimuth Reading 

AZ MAX = current_AZ; 

write_eepr om_ cal data(); II Write the Calibration Data to EEPROM 

Serial.println("Max Azimuth Calibration Complete"); 

The rotate_az_cw () and rotate_az_ccw () functions are used to 
control the brake solenoid and the rotator motor drive relays: 

void rotate az ccw() II Function to Rotate Azimuth Left (CCW) 

digitalWrite(brake, HIGH); II Release the brake 

digitalWrite(rotate left, HIGH); II Set the Rotate Left Pin High 

digitalWrite(rotate right, LOW); II Make sure the Rotate Right Pin is Low 

void rotate az cw() II Function to Rotate Azimuth Right (CW) 

digitalWrite(brake, HIGH); II Release the brake 

digitalWrite(rotate right , HIGH); II Set the Rotate Right Pin High 

digitalWrite(rotate left , LOW ); II Make sure the Rotate Left Pin Low 

The az _rotate stop () function is used to stop all rotation. The motor 
drive relays are de-energized, and a one second delay is added to allow the 
rotator and antenna to coast to a stop. After the one second delay expires, the 
brake solenoid is de-energized and the brake is engaged. 

void az rotate stop() II Function to Stop Azimuth Rotation 

digitalWrite(rotate right, LOW); II Turn off the Rotate Right Pin 

digitalWrite(rotate left, LOW); II Turn off the Rotate Left Pin 

set AZ = -1; 

delay(l000); 

dig i ta lWrite(brake, LOW); II Engage the brake 

The rotate to () function is used to move the rotator to the commanded 
position. The rotator will tum automatically until it reaches the desired position 
or is given a Stop command. 

Modified COE/Hy-Gain Rotator Controller 25-17 



void rotate_to() II Function t o Ro t ate to Set Po i nt 

if (debug_mode) 

Serial.println("M Comma nd - Ro t ate Azimuth To Function" ); 

II Decode Command - Format Mxxx where xxx =Degrees to Move to 

if (debug_ mode) 

Serial.println(serial buffe r i ndex ); 

if (serial_buffer_index == 4 ) II Verify the Command is the proper length 

if (debug_mode) 

Serial.println("Value in [l ] t o [3] ?"); 

II Decode the Azimuth Va l ue 

Requested_AZ = (String(char( s eri a l_buffer[l ])) + String (char (ser i a l 

buffer[2])) + String(char( s eri a l _buffer [3]) ) ) ; 

AZ To= (Requested_AZ.toint()); II AZ Degrees to Move to as an integer 

if (AZ_To <0) II Make s ure we don ' t go below 0 degrees 

AZ To = 0; 

if (AZ_ To >360) II Make sure we don ' t go over 360 degrees 

AZ To = 360; 

if (AZ_To > 180) I I Adjust f o r Meter starting at midscale 

AZ To = AZ To - 180; 

e l se { 

AZ To = AZ To + 180; 

if (debug_mode) 

{ 

Serial.println(Requested_AZ ); 

Serial.println(AZ To ); 

II set the move flag a nd s t ar t 

read_ adc(); II Read the ADC 

II Map it to degree s 

if (debug_mode) 

25-18 Chapter 25 



Serial.println(current_AZ); 

II Map the Azimuth Value to Degrees 

AZ Degrees= map(current_AZ, AZ 0, AZ_MAX, 0, 360); 

if (debug_mode) 

{ 

Serial.println(AZ Degrees); 

AZ Distance= AZ To - AZ Degrees; II Figure out far we have to move 

set_AZ = AZ To; 

II No move needed if we're within the defined tolerance range 

if (abs(AZ Distance) <=AZ Tolerance) 

az rotate stop(); //Stop the Azimuth Rotation 

set AZ 

else { 

if (AZ 

{ 

= -1; // Turn off the Move Command 

II Move Azimuth - figure out which way 

Distance> 0) //We need to move right (CW) 

rotate az cw(); II If the distance is positive, move right (CW) 

else { 

rotate_az ccw(); //Otherwise, move left (CCW) 

The set 0 az cal () function is used to set the azimuth zero calibration 
- - -

value. This value is then stored to the AZ 0 calibration variable and saved to 
the Arduino's onboard EEPROM. 

void set 0 az cal() // Set Azimuth Zero Calibration 

Serial.print l n("Calibrate Zero Function"); 

read_adc(); II Read the ADC 

II save current Azimuth value to EEPROM - Zero Calibration 

Serial.println(current_AZ); 

AZ 0 = current_AZ; // Set the Azimuth Zero Calibration to current position 

write eeprom_cal data(); //Write the Calibration Data to EEPROM 

Serial.println("Zero Azimuth Calibration Complete"); 

Modified COE/Hy-Gain Rotator Controller 25-19 



The read adc () function is used to read the ADS1115 module and 
returns the raw uncalibrated rotator position digital value: 

void read_ adc() // Function to read the ADC 

if (debug_ mode) 

{ 

Serial.println("Read ADC Functio n "); 

int RotorValue; //Variable to store the rotor value 

adc.setRate(ADS1115_RATE_32); //Set the ADC rate to 32 samples/sec 

adc.setGain(ADS1115 PGA_OP256); II Set the ADC gain to 0.007813 Volts 

II Set the ADC to Channe l 0 ANO+ ANl Differential Mode 

adc . setMult i plexer(ADS1115_MUX_PO_Nl); 

delay(lOO); // adc settling delay 

II Read ADC Channel 0 and 1 Differentially 

current AZ = adc.getDifferential(); 

Finally, the check_ move () function handles the actual rotation. If the 
sketch has received a move command, the check move () function will 
manage the rotation until the commanded rotator position has been reached or a 
Stop command is received. 

void check_ move() II Check to see if we've been commanded to move 

if (set_AZ != - 1) { II We're moving - check and stop as needed 

read_ adc(); II Read the ADC 

II Map AZ to degrees 

if (debug_mode) 

Serial.println( current_AZ) ; 

II Map the Current Azimuth reading to Degrees 

AZ Degrees= map(cur rent_AZ, AZ 0, AZ_MAX , 0 , 360) ; 

if (debug_mode) 
{ 

Serial .println(AZ Degrees); 

if (set_AZ != - 1) // If Azimuth is moving 

25-20 

AZ Distance= set AZ - AZ Degrees; // Check how far we have to move 

II No move needed if we're within the tolerance range 

Chapter 25 



if (abs(AZ Distance) <= AZ_Tolerance) 

a z_ rotate_stop(); //Stop the Azimuth Rotation 

se t AZ= - 1; // Turn off the Azimuth Move Command 

el s e { // Move Azimuth - figure out which way 

i f (AZ Di s tance > 0) //We need to move right (CW) 

r otate a z cw(); II Rotate right (CW) if positive 

e lse { 

r o t ate az ccw (); // Rotate left (CCW) if negative 

You can see how much of the Yaesu Azimuth/Elevation Controller sketch 
that we were able to re-use. This is one reason why working with the Arduino 
is so much fun. Once you have built your own Arduino sketch and library 
collection, you can re-use them endlessly in your future projects, greatly 
reducing your sketch development time. Being able to re-use huge blocks of 
code made this a very easy sketch to create, since all that we had to do was a 
little modification here and there. Once you have the sketch ready for testing 
and debugging, you can use the Serial Monitor to send the Yaesu GS-232A 
commands to the rotator controller. 

Once you have everything debugged and working, don't forget to upload the 
sketch with the debug mode turned off, and the Reset Disable jumper installed 
on the Arduino protoshield, before trying to control the rotator with Ham Radio 
Deluxe. 

Now we're ready to have some real fun. With the sketch complete, we're 
ready to test the interface and set the azimuth calibration values. For this test, 
you can use the Arduino IDE's Serial Monitor to send the Yaesu GS-232A 
commands directly to the Arduino. Manually rotate the azimuth to zero (the 
front panel analog meter at minimum deflection) and use the "O" command to 
set the zero calibration point. Then, manually rotate the azimuth to full-scale 
on the front panel analog meter and use the "F" command to set the azimuth 
full-scale value. Once you have done that, your controller is calibrated, and 
the calibration values are stored in the Arduino's onboard EEPROM. You can 
recalibrate your controller at any time by repeating the calibration process. You 
can now send the various Yaesu GS-232A controller commands listed back in 
Table 25 .1 to test all the functions on your controller. 

Now that your controller is calibrated, you're ready to use the controller 
with the Ham Radio Deluxe rotator controller software on your PC. Don't forget 
to install the Reset Disable jumper and have the sketch loaded with the debug 
mode turned off. Configure the Ham Radio Deluxe rotator controller to use the 
Arduino 's COM port, set the baud rate to match the serial port speed setting in 
the sketch, and select the Yaesu GS-232A/Az rotator controller in Ham Radio 
Deluxe. Now your rotator can be controlled by Ham Radio Deluxe, and the 

Modified COE/Hy-Gain Rotator Controller 25-21 



25-22 

t&;.. ttmRc. ('- ·I.of] 

~ ~ ~ tu~ IodJ '!ltndDw tM> - " . 
J ~ ..,. 0 

Nlwwnbif ~ UW~ Hcme P~ 
,..., 

; 00£.Cornect 

-
Figure 25.10 - Screen shot of Ham Radio Deluxe controlling the modified COE/Hy-Gain 
rotator controller. 

current rotator position will be displayed on the HRD rotator controller screen 
as shown in Figure 25.10. If the rotator turns correctly, but Ham Radio Deluxe 
doesn't show anything on the rotator dial, you need to verify that the Arduino 
does not have the command echo statement uncommented in the check 
serial () function. Ham Radio Deluxe doesn't like it when you echo the 
command back to it. If everything went well, you now have a fully operational 
CDE/Hy-Gain rotator controller that can be controlled by Ham Radio Deluxe or 
other software on your PC. 

Enhancement Ideas 
Because this needed to be a fully functional project, there's not a whole lot 

left for you to enhance. You could use an Arduino Nano and shrink everything 
to a perfboard mounted inside the CDE/Hy-Gain rotator control box, or you 
could even put the Arduino in a small external enclosure and run the rotator 
sense and relay control wires through a small hole drilled in the rotator 
controller chassis to save you the fun of having to cut out a square hole in the 
rotator controller chassis for the Arduino's USB connector. You might also want 
to add an RGB LED to the front of your CDE/Hy-Gain control box so you can 
tell when the PC is controlling the rotator. One final enhancement would be 
to add an infrared LED detector and use an infrared controller to control your 
rotator wirelessly. This would allow you to move your rotator control box off 
your desk, and clear up some space for more stuff. 

References 

Chapter 25 

Ham Radio Deluxe - www.ham-radio-deluxe.com 
Texas Instruments - www.ti.com 
Yaesu - www.yaesu.com 



CHAPTER 26 

In Conclusion 

The previous chapters in this book have shown many ways to use the Arduino 
Uno to enhance your ham radio capabilities. Look at these projects as the 
beginning of your Arduino experience. 

In this book, we've only been able to scratch the surface of what the 
Arduino can do. There are so many more shields and modules that can be used 
in ham radio projects that we haven't gotten to play with yet, but that too is part 
of the fun of the Arduino. Like the Erector Set from my childhood, there is no 
end to the things that can be built, especially with new add-ons coming out all 
the time. In this book, I have tried to cover the broad spectrum of ham radio, 
creating projects that briefly touched as many aspects as possible. You know as 
well as I do that can't be done entirely in a single book. This is where you come 
in. Hopefully, this book has given you the spark of inspiration and knowledge 
you need to go out and create your own projects. 

If you need to learn more about the Arduino and what it can do, there 
are several websites that have excellent tutorials and projects. The Arduino 
Playground, Instructables.com, SparkFun.com and Adafruit.com are just 
several that come to mind, but there are many others to choose from. 

In Conclusion 26-1 



So where do you start? Well, how about starting with the things that are not 
in this book. For example, the Arduino can be web-enabled with the Ethernet 
shield. With the Ethernet shield, you can create Arduino projects that can be 
accessed via the Internet, and control and monitor your shack remotely. 

Another area that could prove quite interesting is the linking of an Android 
phone to the Arduino. There are numerous Android apps available that allow 
your Arduino to communicate with an Android device via Bluetooth. Now you 
can create telemetry and control applications for the Arduino. To help you along 
this path, take a look at Android apps such as ArduDroid, ArduinoCommander, 
Arduino Uno Communicator, and Arduino Total Control, just to name a few. For 
the PC side, there are programs such as Processing and Ardulink that will allow 
you to create applications on your PC that can communicate with the Arduino. 

Voice Recognition 
While I was wrapping up this book, I bought an EasyVR voice recognition 

shield shown in Figure 26.1. This shield can respond to 28 speaker
independent, and 32 speaker-specific user-defined commands. It comes 
complete with a software library for the Arduino, so how hard can it be 
to get this new toy working? I doubt it will be very hard at all. We've had 
voice-operated (VOX) transmitters for years, but now, we can take that to a 
whole new level and make our entire shack voice-controlled. I am sitting here 
thinking my usual phrase, "Wouldn't it be cool if you could just sit back, give 
your antenna rotator a voice command, and have it tum your antennas for 

Figure 26.1 - The EasyVR voice recognition shield. 

26-2 Chapter 26 



you automatically?" Why stop there? You can connect an Arduino to your 
transceiver's computer interface and do everything by voice commands. For me, 
the possibilities are endless with this new shield. 

With motion and infrared sensors, you could use your Arduino to tum on 
everything in your shack when you walk in, and tum everything off when you 
leave. Sure you can use a plain old power switch, but that's just not that same as 
creating your own Arduino project to do it for you. 

And we've only scratched the surface of what can be done with the direct 
digital frequency synthesis (DDS) modules. If you link a DDS module with an 
SWR sensing unit, you can build your own antenna analyzer. If you link that to 
your PC or Android phone, or use one of the color TFT displays on the Arduino 
itself, you can graph the entire SWR curve for your antennas. Going further, 
you can use a DDS module and create your own Arduino-based transceiver. 

TEN-TEC Rebel Open Source Transceiver 
If you're not into designing your own transceiver, but still want to 

experiment with one, there are Open Source products such as the TEN-TEC 
Rebel Model 506 QRP CW transceiver shown in Figures 26.2 and 26.3. The 
Rebel is controlled by a Digilent chip.KIT Uno32, which is a more powerful 
software and hardware-compatible variant of the Arduino Uno. Because the 
Rebel is Open Source, both hardware and software - everything you need to 
roll your own extra features and enhancements - is provided to you under the 
Open Source umbrella. The TEN-TEC Rebel Yahoo User's group has already 
created a number of enhancements to the Rebel, including various displays, CW 
keyers, and more, all of which are shared under Open Source licensing for all to 
use and enjoy. I feel that the Rebel is just the start of an Open Source revolution 
in ham radio, and it's being fueled by the Arduino and its cousins. 

The world of Open Source is truly a wide-ranging and wonderful world. It's 
like having thousands of mentors and fellow Arduino developers just a mouse 
click away, freely sharing their knowledge, creations, and questions with you. 
This book could never have happened had others not shared their knowledge 
and creations for me to learn from and to build upon. 

Figure 26.2 - The TEN-TEC Rebel Model 506 Open Source QRP CW transceiver. 

In Conclusion 26-3 



Figure 26.3 -
Inside view of 
theTEN-TEC 
Rebel showing 
an Arduino 
protoshield 
mounted on the 
chipKit Uno 32 
shield expansion 
pins. 

So, as you go out and start creating your own magic with the Arduino, please 
remember to share back to the Open Source community so that others can follow 
in your footsteps. And by all means, please feel free to share with me what you 
have done, both with the projects in this book and the projects you create on your 
own. Who knows, you may end up creating that one enhancement that I would 
love to have and didn't even think about, or provided the spark for my next 
Arduino adventure. 

73, Glen Popiel, KW5GP 

References 
Adafruit Industries - www.adafruit.com 
Android Apps - play.google.com/store/apps 
ArduinoCommander - arduinocommander.blogspot.com 
Arduino-Communicator - github.com/jeppsson/ Arduino-Communicator 
Arduino Playground - playground.arduino.cc 
Ardulink - www.ardulink.org 
Instructables - www.instructables.com 
Processing - www.processing.org 
SparkFun Electronics - www.sparkfun.com 
TEN-TEC - www.tentec.com 
TEN-TEC Rebel User's Group - groups.yahoo.com/neo/groups/ 

TenTec506Rebel 
VeeaR EasyVR - www.veear.eu 

26-4 Chapter 26 



APPENDIX A 

Sketches and Libraries 

This is a list of all of the sketches and libraries used to create the projects 
in this book. You can download a PDF file with the complete sketches and 
libraries from the ARRL website at www.arrl.org/arduino. You can also 
download the sketch and library files themselves from www.wSobm.us/ 
Arduino. Links to the original libraries are also provided to allow you to 
download the current version of the libraries if desired. 

Chapter 7 - Random Code Practice Generator 
Libraries Required: 

LiquidCrystal_I2C 
Morse (customized) 

Sketch Required: 
Random_ Code_ Oscillator.ino 

Chapter 8 - CW Beacon and Foxhunt Keyer 

Libraries Required: 
Morse (customized) 

Sketch Required: 
CW _Beacon.ino 

Chapter 9 - Fan Speed Controller 
Libraries Required: 

One Wire 
Sketch Required: 

Fan_Speed_ Controller.ino 

Chapter 1 O - Digital Compass 
Libraries Required: 

LiquidCrystal_I2C 
HMC5883L 

Sketch Required: 
Digital_ Compass.ino 

Appendix 1 



2 Appendix 

Chapter 11 - Weather Station 
Libraries Required: 

dht 
LCD5110_Basic 

Sketch Required: 
Weather_Station.ino 

Chapter 12 - RF Probe with LED Bar Graph 

Libraries Required: 
None 

Sketch Required: 
RF _Probe.ino 

Chapter 13 - Solar Battery Charging Monitor 
Libraries Required: 

None. 
Sketch Required: 

Solar_ Charging_Monitor.ino 

Chapter 14 - On Air Indicator 
Libraries Required: 

None 
Sketch Required: 

On_Air_Indicator.ino 

Chapter 15 -Talking SWR Meter 
Libraries Required: 

LCD511 O_Basic 
Sketch Required: 

Talking_SWR_Meter.ino 

Chapter 16 -Talking GPS/UTC Time/Grid Square Indicator 
Libraries Required: 

LCD5110_Basic 
TinyGPS 

Sketch Required: 
Grid_Square_Display.ino 

Chapter 17 - Iambic Keyer 
Libraries Required: 

LCD5110_Basic 
Sketch Required: 

Iambic _Keyer.ino 



Chapter 18 - Waveform Generator 
Libraries Required: 

LiquidCrystal_I2C 
Sketch Required: 

Waveform_ Generator.ino 

Chapter 19 - PS/2 CW Keyboard 
Libraries Required: 

12C 
LiquidCrystal_I2C 
Morse (customized) 
PS2Keyboard (customized) 

Sketch Required: 
CW _Memory _Keyer.ino 

Chapter 20 - Field Day Satellite Tracker 
Libraries Required: 

None 
Sketch Required: 

Satellite_ Tracker.ino 

Chapter 21 - Azimuth/Elevation Rotator Controller 
Libraries Required: 

ADS 1115 (customized) 
12Cdev (customized) 

Sketch Required: 
Yeasu_ GS_232A_Rotor_ Controller.ino 

Chapter 22 - CW Decoder 
Libraries Required: 

LiquidCrystal_I2C 
MorseEnDecoder 

Sketch Required: 
CW _Decoder.ino 

Chapter 23 - Lightning Detector 
Libraries Required: 

AS3935 
12C 
LCD5110_Basic 

Sketch Required: 
Lightning_Detector.ino 

Appendix 3 



4 Appendix 

Chapter 24 - COE/Hy-Gain Rotator Controller 

Libraries Required: 
ADS 1115 (customized) 
I2Cdev (customized) 
LiquidCrystal_I2C 
Timer 

Sketch Required: 
Rotor_ Controller.ino 

Chapter 25 - Modified COE/Hy-Gain 
Rotator Controller 

Libraries Required: 
ADS 1115 (customized) 
I2Cdev (customized) 

Sketch Required: 
Modified_ CDE_Rotor_ Controller.ino 

Libraries 
All libraries used for the projects in this book can be downloaded either 

from the link provided or from www.w5obm.us/ Arduino. In the case of 
the LCD5110 _ Basic library used for the Nokia 5110 display, the library 
developer has requested that you download the library directly from their 
website to ensure the latest version. 

Library Links 

LiquidCrystal_I2C - hmario.home.xs4all.nVarduino/LiquidCrystal_I2C 
One Wire - www.pjrc.com/teensy/td_libs_ One Wire.html 
HMC5883L - bildr.org/2012/02/hmc5883l_arduino 
dht - arduino.cc/playground/Main/DHTLib 
LCD5110_Basic - www.henningkarlsen.com/electronics/library. 

php?id=44 
TinyGPS - www.arduiniana.org 
I2C - github.com/rambo/12C 
MorseEnDecoder - code.google.com/p/morse-endecoder 
AS3935 - www.github.com/SloMusti/ AS3935-Arduino-Library 
Timer - www.github.com/JChristensen/Timer 

All customized libraries available at www.w5obm.us/ Arduino: 
Morse 
PS2Keyboard 
ADS1115 
I2Cdev 



APPENDIX B 

Design and Schematic Tools 

There are two primary tools that I use to design and document my Arduino 
projects, Fritzing and CadSoft EaglePCB. Documenting your projects is 
very important. Sometimes you'll revisit a project that you built months ago 
(or longer), and need to be able to pick up where you left off. Without good 
documentation, you'll lose a lot of time trying to remember how and why you 
did something the way it was done. 

Fritzing 
Fritzing is a free Open Source design tool I use to produce drawings of 

how the circuit will look on a breadboard. Fritzing produces a realistic-looking 
layout of the breadboard design and all you have to do is match your actual 
breadboard wiring to the Fritzing drawing to construct your prototype. 

Fritzing comes with a parts library that contains many of the components 
you will be using to design your projects. Fritzing will run on Windows, Mac 
OS X, and Linux. New parts definitions are constantly being added to the 
Fritzing distribution and their website for download. The parts in Fritzing are 
customizable, and you can modify existing parts templates, or create your own. 
The Fritzing website, www.fritzing.org, has a series of excellent tutorials to 
help you learn how to use Fritzing in your circuit designs. Fritzing can also be 
used to draw schematics and create the actual printed circuit board patterns for 
etching circuit boards of your finished projects. 

lnkscape 

Fritzing graphics for new parts are easily created using another free Open 
Source program called Inkscape. Inkscape is a free, Open Source graphics 
editor that can create the scalable vector graphics (SVG) files used by Fritzing. 
Inkscape will run on Windows, Mac OS X, and Linux. The Inkscape website, 
www.inkscape.org, has a number of excellent tutorials to help you along your 
way when you need to design your own parts for Fritzing. 

EaglePCB 
Cadsoft's EaglePCB is my tool of choice for creating schematic drawings. 

Eagle is used commercially by many companies to produce schematics and 

Appendix 5 



6 Appendix 

printed circuit boards. EaglePCB will run on Windows, Mac OS X, and Linux. 
As with Fritzing, EaglePCB comes with an extensive library of components. If 
the component you need is not in a library, you can easily create or download 
a new component, or modify an existing one to get what you need. EaglePCB 
will also produce the Gerber data files used to create etched circuit boards. 
While Fritzing does an excellent job creating the breadboard layouts, I prefer to 
use EaglePCB to create my finished schematic diagrams. 

EaglePCB has several levels of licensing. The freeware Eagle Light Edition 
will do just about everything the average hobbyist needs. The Eagle Light 
Edition limits you to a circuit board size of 100 x 80 mm (4 x 3.2 inches), two 
signal layers and a single design sheet. The Light Edition also limits you to 
a single user and nonprofit applications. If you are planning to create circuit 
boards for your projects, the layout and autorouting features can be added to the 
Light Edition for $69. 

The Eagle Hobbyist version allows you to create circuit boards up to 160 
by 100 mm (6.3 x 3.9 inches), six signal layers and up to 99 design sheets. The 
Hobbyist version also includes the layout and autorouting features. A single
user license for the Eagle Hobbyist version currently costs $169 and you are 
restricted to noncommercial use. 

If you plan to sell your finished products and designs, you can purchase 
either the Eagle Standard or Professional versions starting at $315 for a single
user license. 

As with Fritzing and Inkscape, the CadSoft website (www.cadsoftusa. 
com) has an excellent series of tutorials and videos to help you learn how to use 
EaglePCB to create your schematic diagrams. 



APPENDIX C · 

Vendor Links and References 

The following companies offer parts and supplies of general interest to 
Arduino experimenters. Many of their products were used in projects described 
in this book. 

4D Systems -www.4dsystems.com.au 
Adafruit Industries - www.adafruit.com 
Amazon - www.amazon.com 
Austriamicrosystems AG - www.austriamicrosystems.com 
Crisp Concept - www.crispconcept.com 
DFRobot - www.dfrobot.com 
Diligent - www.digilentinc.com 
eBay - www.ebay.com 
Embedded Adventures - www.embeddedadventures.com 
MFJ - www.mfjenterprises.com 
Midnight Design Solutions - www.midnightdesignsolutions.com 
Pololu Robotics and Electronics - www.pololu.com 
RadioShack - www.radioshack.com 
Smarthome - www.smarthome.com 
Solarbotics - www.solarbotics.com 
SparkFun Electronics - www.sparkfun.com 
TEN-TEC - www.tentec.com 
Tindie - www.tindie.com 
West Mountain Radio - www.westmountainradio.com 
XlO - www.xlO.com 
Yaesu - www.yaesu.com 
ZiGo - www.zigo.am 

Appendix 7 



NOTES 



NOTES 



NOTES 



NOTES 



INDEX 

Note: The letters "ff' after a page 
number indicate coverage of the 
indexed topic on succeeding pages. 

A B 
AD9833 programmable waveform generator: ....... 18-4 Bluetooth module: ....... ... .... ..... ........ .... ... ..... .......... 3-25 
AD98xx series DDS module: ... ... .......... ... ......... .... 3-21 BMP085 barometric pressure sensor: ... ...... 3-21, 11 -3 
ADS1115 AID converter module: ... ..... ..... ..... ........ 21-3 Breadboard shield: ... ... ............. ........ ............ .. 3-1 0, 6-2 
Analog input: ...... ... ... .. ............... ..... ... .. ..... .... ... ... ..... 4-2 
Analog switch chip: ........ ... ............. ...... ......... ... ...... 3-31 c 
Analog-to-digital converter module: .......... ... ....... .. 3-27 
Anderson Powerpole connectors: .... ............. .... .... 13-5 
Android apps: .. ......... .. ...... ............. .... .. ..... ............. 26-2 
Arduino 

History: ....................... .... .... ..... ..... .... ....... ........... 1-3 
Uno: ..... ............... ...... ............. ..... ..... .. ............ 1-2 

Arduino boards and variants: ................................ 2-1ff 
Bluetooth: .................. .. ..................... ....... ........ ... 2-2 
Comparison chart: ........... ............. .... .. ... .. ....... .. 2-12 
DC Boarduino: ........ .. .... ... ..... ... ... .......... ..... ... ... ... 2-4 
Diecimilia: .. ................ ... ... ..... .......... .. .... ........ ... .. . 2-2 
Digilent chipKIT Max32: .. .... .. ... .. ....... ........... .... 2-11 
Digilent chip KIT Uno32: ...... ........... ... ..... ... ..... .. 2-10 
Due: ................................ .......... .... .. ... ..... ..... .. 2-8 
Duemilanove: .................... ...... ....... ... .. ..... .. ...... .. 2-2 

COE/Hy-Gain rotator controller 
commands (Table): ...... ... ... ........ ..... .... .. .......... 25-9 

COE/Hy-Gain rotator controller 
modification project: .... ..... ... ..... ..... .... ....... .. .. 25-1 ff 

COE/Hy-Gain rotator controller project: ..... ..... .. .. 24-1ff 
Code practice generator project: ..... ..... ... ..... .... ..... 7-1 ff 
Color TFT display: .......... ......... .. ... ..... ... ..... ... .. 3-3, 3-16 
Creative Commons License: ......... ... .. ... ..... .. ..... ... ... 1-6 
Current sensor module: .... ... ..... .... ..... ........ ... .... .... . 3-24 
CW beacon and foxhunt 

keyer project: ........ .. ...... ........ ... ... ... .. ..... ........ .. 8-1 ff 
CW decoder project: ........... ..... ......... ..... ...... ....... 22-1 ff 
CW iambic keyer project: .... .. ..... .. ............... ... ..... 17-1ff 
CW keyboard project: .......... .... .... .... .. ....... ... ........ 19-1 ff 

Esplora: ..................... ... ....................... .......... ... .. 2-7 
Extreme: ............................................. ................ 2-2 D 
lduino Nano: ...... .. ...... ... ...... ........ ........... ...... 2-2, 2-3 DC Boarduino: ... ........... ........... ....... .... ... .... ... ..... ...... 2-4 
Leonardo: ..... .. ... ..... ................. ............ .... ... ..... ... 2-7 
LilyPad: ....... ........... .. ... .... ......... ....... .. ........... 2-2, 2-4 
Mega: ..................... ... .... .... .. ......... ........ ........ .... 2-6 
Mini: ...... ........ ..... ... .... ..... .... ............. ........... .... 2-2 
NG: ................ .................. ... ... .. ...... ....... ........ 2-2 
Pro Mini: ... ........ ........... ..... .. ..... .. .. ..... ......... .. ....... 2-3 
Solarbotics Ardweeny: ....... ... ..... ..... ... ... ....... ..... . 2-4 
Tre: ...... .. ............ .. .. ........... ......... ........ ... ..... ... 2-9 
Uno R3: ... .......... .. .. ...... ....... .. ....... ...... .. .... .. ......... 2-3 
USB: .............. .. .... ....... .. .............. .... ........... ..... 2-2 
Yun: ..... ......... .......... .... .... .. ... ........... ..... ... ....... 2-8 

Arduino Integrated Development Environment 
(IDE): ..... ...... ........ ... .... .................... ..... ........... 5-1 ff 

Argent Radio Data shield: ............ ...... ..................... 3-8 
ATmega1210: .... ........ .... ................. ............ ... ..... ..... 2-6 
ATmega 168: ........... .. ....... .. ........... .... ..... ... ....... .. .... .. 2-2 
ATmega328: ..... ... .. ........... ... ....... ... ... ..... .. ... ... ....... .. . 2-3 
ATmega32u4: ...... ....... ........ ..... ... ... ..... ..... ... ... ......... . 2-7 
ATmega8: ....... ..... ...... ........ .... .... ... ................ ........ ... 2-2 
Audio shield: ... .. ... .. ......... ... ......... ..... ....... ... ............ .. 3-4 
Azimuth/Elevation rotator controller project: ..... .. 21-1 ff 

Debugging: .................... ... .......... .... .. ..... ......... 5-9, 21-7 
Development station: ..... ...... .. ....... ..... .... ..... ........... .. 6-2 
DFRobot Graphic LCD4884 display shield: .. .......... 3-2 
dht library: .......... .... ... ... .... ........ .......... .. ....... ........... 11-5 
Digital compass module: ..... ... ... .. .. ........ ...... ... ....... 3-24 
Digital compass project: .. ..... .. ...... ...... ........ ...... ... 10-1 ff 
Digital 1/0: ..... ... ..... ........... ... ..... .... .. .. ... ..... ..... ... ... ..... 4-1 
Digital 1/0 expander: .... ..... ........... ..... ........ ............ 3-30 
Digital potentiometer chip: ... ... ........ ... ...... .... .......... 3-31 
Digital-to-analog converter module: .... ... ..... ........ .. 3-29 
Digilent chipKIT Max32: ... ... .. ........ ........... ... .. ... ... .. 2-11 
Digilent chipKIT Uno32: ..... ................ ... ... ..... ... ..... 2-10 
Direct digital synthesizer (DDS) module: .. .. .. .. ...... 3-21 

AD98xx series: ... ............. ... ..... ... ........ ........... ... 3-21 
Display: ...... ..... ...... ...... ..... ...... .... ... ... ..... ... ..... ... .... 3-12ff 

Color TFT: ...... ........ ........ ............... ............ 3-3, 3-16 
DFRobot Graphic LCD4884: .. ........ ..... ........... ... . 3-2 
Graphic LCD: ..... .. .... ... ........ ...... ... ........ ........... .... 3-2 
Hitachi HD44780: ........... ... ............ ........ .... 3-2, 3-12 
LCD: ....... ...... .. .... ... ...... ... ........ ... ........ ... .......... 3-2 
LED: ...... .... .... .. ... .. ... .. .. .... ............. ..... ... ..... ... 3-32 



LED driver: .. .......... ..... ........... .... ....................... 3-32 Integrated Development Environment (IDE): ....... . 5-1ff 
Nokia 5110: ...... ......... .................... .. 3-2, 3-14, 11-3 Inter-Integrated Circuit (12C) bus: ..................... ... .. .. 4-4 
Organic LED (OLEO): ... .. .... ....... ..... ... ..... ......... 3-15 Interrupts: ..... ........ ....... .................... ............ ..... ....... 4-5 
Vacuum fluorescent display (VFD): ....... ... .. .. .... 3-13 
VGA module (40 Systems): ............ ...... .. .... ... .. 3-16 

DS18820 temperature sensor: .... .. .. ... ... ........ 3-19, 9-3 
L 
LCD display: .......... ......................................... 3-2, 3-12 

E 
LCD5110_8asic library: .... ... ...................... 11-5, 16-12 
LED display: ... ....... .... ... .......... ....................... .. ...... 3-32 

EaglePCB software: ...... ............. ...... .... .... 5-7, 7-8, A-5 LED driver: ............ .. ....................................... .. .. .. . 3-32 
EasyVR shield: ........ ............... ............. .. ................ 26-2 Lesser GNU GPL (General Public License): ..... .. ... 1-6 
EEPROM library: ................... ..... ................ ... ... ..... 19-5 Level converter module: .. ................ .. ................. ... 3-18 
EEPROM module: ............ .. ..... ........................... ... 3-30 Library: ................... .......... ...... .... ............. 5-3ff, A-1, A-4 
Elliott, Steven, K1EL:. ... .. .. ....................... ......... ..... 17-2 dht: ........... .. ..... .......... ................................. 11-5 
Ernie 2 text-to-speech module: ........... 3-23, 15-2, 16-5 EEPROM: ......... ............................ ..... .. ... .... ...... 19-5 
Enclosures: .... .... ... ... .......... ... ... ........... ... .............. 3-34ff HMC5883L: ........... .... .......... ............................. 10-3 
Ethernet shield: ..... .... ......... ........ ............. ................ 3-5 LCD5110_8asic: ........ .. .. .. ...... ...... ... ... .. . 11-5, 16-12 

LiquidCrysta1_12C: ............................. .. ...... 7-5, 10-3 

F 
Fan speed controller project:. ..................... ... ..... ... 9-1ff 
Flow chart: ... ...... ..... ..... ... ..... ..... .. ................. .. .. ... ..... 5-6 
Franklin AS3935 lightning detector: ............. ..... .... 23-2 
Franklin AS3935 lightning detector module: ... ..... . 3-24 
Fritzing software: .............. ............... ....... .. 5-7, 7-3, A-5 
FTDI US8 interface: ................... ... ..... .. 2-4, 3-18, 20-4 

Math: .............................. ...... ..... ......... .. ......... 16-7 
Morse: ........... .. ..... .. .... .... ... .................. ....... 7-6, 8-4 
MorseEnDecoder: .... .... ................ ........ .. .......... 22-4 
One Wire: ... ... ... .... ........... .. ..... ............. ... ... .......... 9-5 
PS2Keyboard: .................................................. 19-3 
SoftwareSerial: ... ..................................... 15-5, 16-8 
TinyGPS: ............................ .. ... .. ..... ................. . 16-5 

License, Open Source: ................. ............. ...... ...... 1-4ff 

G 
Lightning detector module: .......................... .. ...... .. 3-24 
Lightning detector project: ..... .... ........... ... ............ 23-1ff 

GNU GPL (General Public License): .......... .. ... ....... 1-5 
GPS (Global Positioning System): .. ...... .. ... ........... 16-3 
GPS logger shield: .. ..................... ... ........................ 3-8 

LilyPad Arduino: ... ... ... .... .................................. 2-2, 2-4 
LiquidCrysta1_12C library: .......................... ..... 7-5, 10-3 
LM567 tone decoder: .................. ...... ..... ... ............ 22-2 

GPS module: ........ .. .. .... .. ................................. ... ... 3-23 
Graphic LCD shield: ............. ........ ........... .. .............. 3-2 M 

H 
Maidenhead grid locators: ......................... .... ........ 16-2 
Math library: ..... ................ .... ... ......... ... ................... 16-7 

H-bridge chip: ....... .............. .. ......... ........ ...... .... ...... 3-32 
Ham Radio Deluxe (HRD) software: ... .. .. .. 20-11, 21 -1, 

21-31, 24-25, 25-2, 25-21 
HAM series rotator: ................... ... ....... ... ..... .... ...... 24-1 
Hitachi HD44780 display: ..... ... .............. ......... 3-2, 3-12 
HMC5883L digital compass module: ........... 3-24, 10-1 
HMC5883L library: ....... ....... ...... ... ....... .......... ........ 10-3 
Hy-Gain rotator controller modification project: .. 25-1 ff 
Hy-Gain rotator controller project: ..... ......... ......... 24-1 ff 

MAX7219 LED driver: ..................... ....... .... .. 3-32, 12-2 
MaxDetect 1-Wire interface: ... ........................ 4-3, 11-2 
Maxim 1-Wire interface: .. ...... .. .............. ...... ... .. 4-2, 9-3 
MCP4725 D/A module: ................... ... ........ .... ....... 18-4 
Memory management: ...... ....................... .... ........... 5-8 
Memory tracking: ................. .......................... ........ 19-5 
Millibars: .......... ..... .. ............. ... ............... ................ 11-2 
MIT License: ............. .............................................. . 1-6 
MOD-1016 lightning detector module: ... .. .. .. .. ....... 23-4 
Module: ... ...... .......... ............................................. 3-11ff 

Analog-to-digital converter: .............. ...... ... ...... . 3-27 
81uetooth: ....... .................................... .. ............ 3-25 

1/0 methods: ......... ................. .... ... ... .......... .... ........ 4-1 ff 8MP085 barometric pressure sensor: .... 3-21, 11-3 
Analog input: ........ .. .............. ... ... ..... ..... ............. . 4-2 Current sensor: ............. .. .............................. ... 3-24 
Digital 1/0: ........... ... ... ............................ .... .... ...... 4-1 Digital compass: ...................... ...... ................. .. 3-24 
Inter-Integrated Circuit (12C) bus: ...................... .4-4 Digital-to-analog converter: .............................. 3-29 
Interrupts: ........... ............. ... ................ ................ 4--5 Direct digital synthesizer (DDS): .. ................. ... 3-21 
MaxDetect 1-Wire interface: ....... ... .. ................. .. 4-3 DS18820 temperature sensor: ........... .... .. 3-19, 9-3 
Maxim 1-Wire interface: ........ .. ................. .... ...... 4-2 EEPROM: ... .................. .............................. ...... 3-30 
Pulse width modulation (PWM): .......... .. ............. 4-2 Ernie 2 text-to-speech: .. ... ......... ............... ........ 3-23 
Serial 1/0: .............. ....... ...... ........ .... .... ..... .. ......... 4-2 Franklin AS3935 lightning detector: ........ ...... ... 3-24 
Serial Peripheral Interface (SPI) bus: ....... ... ....... 4-3 GPS: ........... ... ............... ....... ................. ........ 3-23 

1/0 shield: ... .... ........ ........ .............. ..... .. ........ ..... ..... 3-10 HMC5883L digital compass: ........ .................... 3-24 
Iambic keyer modes: ............................................. 17-1 INA 169 current sensor: ................... ......... .. .. .... 3-24 
lduino Nano: ......... .. ...................... ... .......... .............. 2-3 Level converter: ............................. ............ ....... 3-18 
INA169 current sensor module: ...... ....... .... .. 3-24, 13-2 Motion detector: ............ .. ................ ................. 3-32 
Inches of mercury: ........... .. .. ............. .... ................. 11-2 Motor driver: ....... .. .. ........ .. ............ ....... .. .......... . 3-27 
lnkscape software: .. ...... ................ ................. ... ...... A-5 Real-time clock/calendar (RTCC): ................... 3-26 



RHT03 humidity/temperature sensor: ..... 3-19, 11-2 Color TFT display: ................ ...... ........ ........... ..... 3-3 
SD card: .. ................ .... .............. .... .. ................. 3-27 OF Robot Graphic LCD4884 display: ................. 3-2 
Skylab SKM53 GPS: ... .... .... ........ ........ ........ ..... 3-23 EasyVR: ... ........... ............................................. 26-2 
Text-to-speech: ...................... ... .... .... ..... ..... ... ... 3-23 Ethernet: .. ........................................................... 3-5 
TinyRTC clock/calendar: ................ .................. 3-26 GPS logger: ........................................................ 3-8 
Vibration sensor: ..... ... ... .. ..... .... ....... ... ...... ....... . 3-32 Graphic LCD display: ............................ ............. 3-2 

Morse library: .. ... ..... .. ......... ............. .................. 7-6, 8-4 Hitachi HD44780 display: ............... .................... 3-2 
MorseEnDecoder library: ....... ..... ... ............ .... ... .. .. 22-4 1/0: ................. .. ..... ..................................... 3-10 
Motion detector module: ...... ... .. .............. .. .. ... ... ... .. 3-32 LCD display: ....................................................... 3-2 
Motor driver module: ............ ... .. ....... ... .................. 3-27 Motor driver: .............. ...... ..... ... ........... ................ 3-4 
Motor driver shield: .. ...... .... .... .... ............ ................ .. 3-4 Nokia 5110 display: ............... .. ........................... 3-2 
Multimeter: .... ...... .... ...... .... .. ........ .............. ...... ... ...... 6-3 Prototyping (protoshield): .......................... 3-11, 6-2 

Relay: .............. ................................................. 3-3 

N 
NMEA protocol: .... ....... ......... ....... ............ ..... 16-1, 16-4 
Nokia 5110 display: .... ... .. ..... .... .... ........ 3-2, 3-14, 11-3 

SD card: ............ .... .... ..... .. ..... ..... .... .......... .......... 3-7 
USB Host:. ................. ......................................... 3-6 
WiFi: ..... .............. .. ... .. ..... .. .. .............. .. ............ 3-6 
Xbee: .. ............. ..... .. ............ .... ... ......... ............. 3-8 

0 
Skylab SKM53 GPS module: .. ..... .. ........ ...... 3-23, 16-3 
SoftwareSerial library: ... ........... ............... ... .. 15-5, 16-8 

On-air indicator project: .. ........ ..... ... .. ... .. ...... ........ 14-1ff 
One Wire library: .... ... .. ... ... .. ... ........... ....................... 9-5 
Open Source: ........................ ..... ... ........................ 1-4ff 

Creative Commons License: ...... ........................ 1-6 

Solar battery charge monitor project: ............... ... 13-1ff 
Solarbotics Ardweeny: ................................... 2-4, 20-3 
Soldering tools: ... ... ..... ... .. ...... .. .................... ....... ..... 6-3 
Switches: .................... .... .. ................. .................... 3-32 

GNU GPL (General Public License): ................. 1-5 SWR sense head: ....... .. .. .. ........ ............................ 15-3 
Lesser GNU GPL: ..... .. ......... .............................. 1-6 
MIT License: ........ .......... ..... ... ............... .... .......... 1-6 T 

Organic LED (OLEO) display: ............................... 3-15 
Oscilloscope: ... ...... ...... ........ .... ...... ...... .. .... .............. 6-4 

Talking GPS/UTC time. grid square indicator 
project: ............................. ............................. 16-1 ff 

p 
Talking SWR meter project:.. .. .. ........... ................ 15-1ff 
TEN-TEC Rebel Model 506 transceiver: .... ..... .. ... 26-3 

Pascals: .................. ..... ...... ..... ..... ........ .. ... ............. 11-2 Test equipment: ..... .. .... ........... ...................... .... ... .... 6-3 

Prototyping shield (protoshield}: .............. ...... 3-11, 6-2 
PS2Keyboard library: ....... ...... ......... .. ...... .... .... ...... 19-3 
Pulse width modulation (PWM): ..... ..... .............. ... ... 4-2 

Text-to-speech module: .. ......... ........... .... .... ....... .... 3-23 
TinyGPS library: ................. .. ..... ....... ..... ................ 16-5 
TinyRTC clock/calendar module: .......................... 3-26 

R u 
Real-time clock/calendar (RTCC) module: ... ..... .. . 3-26 USB Host shield: ... .. ............... ... ..... ... ..... ..... .. .. ........ 3-6 
Relay shield: ...... ................... ......... ........ .................. 3-3 
Resistor to resistor ladder network: ...................... 18-2 v 
RF probe with LED bar graph project: ........ ........ 12-1ff 
RHT03 humidity/temperature sensor: .... .. ... . 3-19, 11 -2 

Vacuum fluorescent display (VFD): ... .. ... .... .... .. .. ... 3-13 
Vendor links: ............................................................ A-7 

s VGA display: .......................................................... 3-16 
Voice recognition: ..... ............................................. 26-2 

Satellite tracker project: .. .. ........... ... ............. .. ...... 20-1 ff 
SatPC32 software: .................... ... .... 20-2, 21-1 , 21-31 w 
Schematic diagram: ... .... .......... ........ .. ...... .. ...... ... ..... 5-6 
SD card module: .. ......... .... ..... ...... .... ... .. .... ... ......... 3-27 
SD card shield: ...... ... .. .... ........ ...... ..... ........... ......... .. 3-7 
Sensor 

BMP085 barometric pressure sensor: .. .. 3-21, 11-3 

Waveform generator project: ............................... 18-1 ff 
Weather sensors: .. .............................................. 3-19ff 
Weather station project: ................... .... .. ........ ..... 11-1ff 
WiFi shield: .............................................................. 3-6 

DS18820 temperature sensor: .. ... ...... .... .. 3-19, 9-3 
RHT03 humidity/temperature sensor: .... . 3-19, 11 -2 x 
Vibration sensor: .......... ............................. .. .... . 3-32 Xbee shield: ...................... ....................................... 3-8 

Serial 1/0: ........... ........ ........... ... .. ............. ................ 4-2 
Serial Monitor: ........... ... ... ..... .. ............. ....... ....... .... 21-7 
Serial Peripheral Interface (SPI) bus: .......... ... ..... .. .. 4-3 
Servo: ...... .. .... ............... .... ..... ........ ....... ................. 20-2 
Shield: .. ........... .... ....... .. ... .... ..... .. ...... ........ .... ... 1-2, 3-1 ff 

Argent Radio Data: .... ....... ... ......... ... .. ................. 3-8 
Audio: ............ ... .... ... ... ...... ................. ... ..... ....... 3-4 

y 
Yaesu G5400/5500 rotator: ................................... 21-1 
Yaesu GS-232A rotator controller 

commands (Table): .... ... .... ....... ... .... .... ..... .... ... 21-5 
Yaesu GS-232A rotator interface: .... 20-2, 21-1, 25-21 

Breadboard: ....... .. ...... ......... .. .................... 3-10, 6-2 


